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1. INTRODUCTION

About 80% of the world's electric power consumption is supplied by the fast-depleting fossil fuels,
simultaneously, the global demand for power consumption continues to increase. Generally speaking, in
renewable power generation, solar photovoltaic, which is a clean and green energy type of lem()l()gy plays a
vital role to fulfill the power shortage [1]-[3]. However, the upper most theoretical limit (detailed balance
limit) of the cfimncy of p-n junction solar energy converters is still limited by non-radiative recombination
mechanism of electron-hole pairs (EHP) at the bandgap energy levels [4]-[7]. Theferore, efficient solar
energy harvesting technologies need to be developed. One way of mitigating the global warming and climate
change effects is through the development of hybrid solar energy systems [8]-[18]. Hybrid
photovoltaic/thermal (PVT) collector systems integration has been investigated in the past decades. A
possible hybrid solar/fuel thermophotovoltaic unit has an additional advantage: the fuel-fired part of the
hybrid system would permit night-time operations [8], [19]-[23]. Futher, within the metamaterial paradigm, it
becomes possible to vary the material designs by engineering “meta-atoms™ as constitutive elements for
artificial materials using the naturally available materials. As long as the meta-atom sizes remain sufficiently
small at the wavelength scale of interest, the macroscopic description of electromagnetic (EM) properties of
matter can be applied to metamaterials, which are made of meta-atoms. This is analogous to the case if the
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aforementioned macroscopic description is applied to naturally occurring materials formed by atoms or
molelles [24]-[27].

Thermophotovoltaics (TPV) refers to a thermal to electrical power conversion, which is based on
tovollaic effect. The basic feature of solar thermophotovoltaic (STPV) is based on the principle that a
high temperature emitter is employed as an intermediate element that absorbs concentrated solar light and
emits thermal radiation energy to the solar cells where the captured thermal radiation energy is converted to
electricity. Light, which is collected in the heat source component of TPV system circuit acts as an
intermediate agent prior to conversion of heat into electricity . The system consists of three main components:
a heat source, an emitter, and a low band gap photovoltaic (PV) cell as shown in Figure 1. So, dm'em
energy sources can be used including radioisotopes [28], chemical fuels [12], and sunlight itself [29]. A two-
dimensional schematic diagram of a cylindrical STPV syam with a thermal storage material is shown in
Figure 2. It is suitable for thermal sources such as wastes, stored heat recovery, and solar energy conversion
involving an intermediate thermal energy storage to operate at temperatures near or far above thousands of
Kelvins [29]-[32].

There are several advantages in energy conversion scheme including the static and dynamic conversion
processes, where the heat conduction is physically separated from the power generation pathway. Also, there
is a lack of fundamental temperature gradient across the material [3;@35]. Thermophotovoltaic energy
conversion is an example of selective emitter application [19]. [36], [37]. A selective emitter is a material that
emits optical radiation in a few emission bands rather than in a continuous spectrum like a blackbody or a
gray body with constant emittance. In a TPV energy conversion, the selective emitter converts thermal
energy to the near infrared radiation at wavelengths where photovoltaic energy conversion is efficient. In a
solar thermophotovoltaic system, the solar radiation is absorbed and re-emitted as a thermal radiation before
illuminating the photovoltaic (PV) cells [19], [38]-[42]. For such TPV, the wavelength region of interest is at
the interval~1 pm-3 pm, which is approximately the region of peak emission of the solar radiation. For an
emitter heated to a realistic temperature range ~1000 K-2000 K, the peak emission wavelength interval is
~1.449 um-2.989 pm, which is in agreement with the Wien’s displacement law. As such, one of the main
requirements of TPV is to have low-bandgap PV cells, with typical bandgaps in the range of ~0.50 eV-0.74
eV or equivalently at a wavelength interval ~1.7 gm-2.3 um [43].
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Figure 1. Basic three components of a TPV system: a Figure 2. A 2-D schematic diagram of STPV
heat source, an emitter, and a PV cell [43]. system with thermal storage materials [29].

In this review, the authors focus on the study of the development of emitters for solar thermal
photovoltaic (TPV) applications. They are the most suitable types of TPV solar materials for efficient solar
TPVs. The identification of emitter based on material type and composition, geometrical structure,
dimensions, and long-term high temperature stability for solar TPV applications including factors that
determine the emitter’s efficiency needs to be investigated further. The fabrications, characterizations, and
simulations for nanoscale materials in the field of nanotechnology, especially in nanophotonics are also
introduced elsewhere [24], [30], [35]-[37], [44], [45]. Needless to say, the conceptual and technological
breakthroughs in the fields of nanophotonics and plasmonics combined with better understanding of the
thermodynamics of the photon energy conversion processes have reshaped the landscape of energy
conversion schemes and devices [46].
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Previously five metrics have been evaluated on the practicality of TPV emitters and in particular, the
emitters that are used to demonstrate the TPV prototype system, which have been discussed by Sakakibara et
al. [43]. Most of the work on TPV emitters has focused on achieving good optical performance, but little
consideration has been made associated with implementing emitters in the operation of TPV systems.
Meanwhile, reviews on TPV emitters based on numerical optimization simulations have not been carried out.

2. METHOD OF SIMULATED EMITTERS DESIGN DETERMINATION

The scope of our work is focused on a TPV emitter as an important component in the context of high
system performance. In particular, we focus on the importance of emitter’s practical implementation in TPV
systems. A very useful emitter is a selective emitter, which preferentially emits thermal energy in a particular
wavelength region. Such a proposed design (shown in Fig. 3) is adopted from Boriskina et al., 2016 [46]. It
works based on the power density emission generated from the TPV emitter and is limited by Planck's law
for black body emissions only. The other reasons for our choosing are there is a need for integrating several
subsystems and there are also difficulties in designing a good emitter type in high-performance TPV systems
[34], [47]-[49]. But, the challenges are we deal with high temperature selectivity and stability. Therefore, it is
critical to further improve not only the theoretical design, but also the experimental fabrication of selective
emitters to offer greater high-temperature stability and performance. Also, it is necessary to consider
strategies to reduce the need for precise alignment between emitters and receivers [46], [50].

What follows is the coverage of the present review. First, the division of practical TPV emitters is
depicted in Table 1. The TPV emmiters are classified into 5 different categories: 1D binary grating, 2D and
3D photonic crystals, multi-layer stacks, and metamaterials. Second, Table 2 depicts a metric-based
evaluation of the metamaterial and metasurface based-emitters. Such a metric-based evaluation is based on
emitter structures, materials used, method of simulations, and design implementations and results.

Table 1. Implementation of practical TPV emitters that have been investigated through simulations [51]-[70].

No. Materials Structures References
1 Tungsten (W) ID binary grating: rectangular slits in [51]
substrate
2 Tungsten 1D complex grating [52]
3 W-5i0:-W 1D trilayer films grating [53]
4 Cylindrical air cavities in VO, 2D photonic crystal (PhC) [54]
5 Cu, Ag, Au woodpile 3D photonic crystal (PhC) [55]
[ Chirped mirror on Er-doped Al gamet wafer on  Multi-layer structures [56]
dielectric mirror
7 W in AlLO, 2D array of nanowires / Metamaterials [57]
8 W in ALO, 2D array of nanowires / Metamaterials [58]
o Au (gold) in ALLO, Metamaterial Metasurface [59]
10 W rectangles on 510 spacer on W Metamaterial Metasurface [60]
11 Tungsten as plasmonic material an integrated solar absorber/narrow-band [61]
thermal emitter (SANTE)
12 Phase-change metamaterials Two Au layers spaced by Ge,Sb,Te, [62]
13 Metamaterials (EBG and dielectric resonator Metamaterial structures [63]
[ERilding blocks)
14 S5i0z-coated W nanospheres on W with W 5i0z-coated W nanospheres on W with W [64]
coating on top coating on top / Metamaterial
15 Si squares on Al-doped zinc oxide on Ta 5i squares on Al-doped zinc oxide on Ta/ [65]
Metamaterials
16 Tantalum {Ta) 2D tantalum (Ta) photonic crystal (PhC) [66]
17 Silicon (Si) ioun—Rod type photonic crystal (PhC) [67]
18 W/HIO; (Tungsten/Hafnia) stacks W grating over a HFO; and a W substrate [68]
19 Tungsten ID microstructure  tungsten  grating [69]
EByramids)
20 Tungsten/Metamaterial Coupling a flat tungsten surface with [70]

guided resonances of a dielectric PhC

_ slab

Table 2. A compiled list of various types of emitters for TPV applications based on simulations [51]-[70].

Types of

No Emitter

Materials

Method of
Simuations

Design
Implementation

Results

Refs
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Our proposed design for a solar thermal photovoltaic (STPV) diagram is depicted in Figure 3.
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Figure 2. A proposed design of an STPV where a selective thermal emitter is shown.
(Adopted from Boriskina et al., 2016 [46]).

3. RESULT AND DISCUSSION OF SIMULATED EMITTERS

An analytical review of how emitters have evolved is depicted in Table 2 above. A number of
researchers have carried out simulations in order to investigate emitters for TPV applications. Sakakibara et
al. [43] have pointed out five practical metrics that need to comform with: a) optical performance, b) the
ability to fabricate in a large area, c) stability to withstand a high temperature for a long period of time, d)
ease of integration in a TPV system, and e) cost affordability. The prime objective in the development of an
emitter is to attain the best optical performance. Nonetheless, an emitter with the best optical performance
may not be necessary the best one for a practical use.

Ref. [64] indicates that the emitter spectral efficiency, which is 39% higher than those of the other cases
is achieveable without the top W cover layer or the W nanospheres. Such an excellent emission selectivity is

geometries shaping the
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: Rigorous coupled-  temperature about fing height, h =
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Metamaterial between narrowband is separated from  energy of 0.6 eV (701
(Tungsten PhC)  tungsten and thermal emission the PhCslab by a  (typical range of
PhC slab with unity vacuum gap standard TPV
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attributed to the strong photonic interaction within the gaps between the adjacent core-shell nanospheres,
tight confined optical fields in both Q-shaped W-Si0,-W nanocavities, ﬂ] bottom nanocavities, which is
formed by the W nanospheres and the W substrate. Further, a "B% relative enhancement of the TPV
system efficiency has beean achieved using selective emitters and reduces to 3.9% with non-ideal selective
emitters [65]. This large reduction is due to sub-bandgap losses, off-angular losses, and high-temperature
dependence of practical constants. It is our hope that Tables 1 and 2 serve as important resources for
researchers.

4. CONCLUSIONS AND FUTURE WORK

We have reviewed twenty types of materials and emitters from different categories (bulk and naturally
occurring selective emitters, 1D, 2D, 3D PhCs, and multi-layer stacks). The present review is an extended
version of that of Sakakibara er al. [43]. The review also considers the application of TPV emitters based on
different simulation methods and designs. Results and analysis were discussed in the form of thought tables
and a proposed design. This framework can be utilized as a useful guide for researchers when conducting
simulations and experiments. The reasons are: the framework presents the different types of emitters, varying
simulation physical constraints/conditions, and the results of STPV applications. In the future work, the
proposed design depicted in Figure 3 will be evaluated and improved aided by simulations using finite-
difference time-domain (FDTD) by Lumerical. Simulations will allow us to predict the efficiency of
emitters. How various layers and different combinations of metamaterials and metasurfaces affect the
efficiency can be observed through simulation results.
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