

Utilizing Motion Sensors in Creating a Movement-Based Violin Simulator Application in Android

UNDERGRADUATE THESIS

Submitted as one of the requirements to obtain Sarjana Komputer (S.Kom.)

> By: FELICIA LIMIARDO 001201900036

FACULTY OF COMPUTING INFORMATION TECHNOLOGY STUDY PROGRAM CIKARANG MARCH, 2023

PANEL OF EXAMINER APPROVAL

The Panel of Examiners declare that the undergraduate thesis entitled **Utilizing Motion Sensors in Creating a Movement-Based Violin Simulator Application in Android** that was submitted by Felicia Limiardo majoring in Information Technology from the Faculty of Computing was assessed and approved to have passed the Oral Examination on 28th March 2023.

Panel of Examiner

Mushenn

Rusdianto Roestam MSc., PhD.

2+1

Tjong Wan Sen, S. T., M.T.

.....

Nur Hadisukmana M.Sc

STATEMENT OF ORIGINALITY

In my capacity as an active student of President University and as the author of the undergraduate thesis/<u>final project</u>/business plan (underline that applies) stated below:

Name	: Felicia Limiardo
Student ID number	: 001201900036
Study Program	: Information Technology
Faculty	: Computing

I hereby declare that my undergraduate thesis/final project/business plan entitled "Utilizing Motion Sensors in Creating a Movement-Based Violin Simulator Application in Android" is, to the best of my knowledge and belief, an original piece of work based on sound academic principles. If there is any plagiarism, including but not limited to Artificial Intelligence plagiarism, is detected in this undergraduate thesis/final project/business plan, I am willing to be personally responsible for the consequences of these acts of plagiarism, and accept the sanctions against these acts in accordance with the rules and policies of President University.

I also declare that this work, either in whole or in part, has not been submitted to another university to obtain a degree.

Cikarang, 16 March 2023

(Felicia Limiardo)

SCIENTIFIC PUBLICATION APPROVAL FOR ACADEMIC INTEREST

As a student of the President University, I, the undersigned:

Name	: Felicia Limiardo
Student ID number	: 001201900036
Study program	: Information Technology

for the purpose of development of science and technology, certify, and approve to give President University a non-exclusive royalty-free right upon my final report with the title:

Utilizing Motion Sensors in Creating a Movement-Based Violin Simulator Application in Android

With this non-exclusive royalty-free right, President University is entitled to converse, to convert, to manage in a database, to maintain, and to publish my final report. There are to be done with the obligation from President University to mention my name as the copyright owner of my final report.

This statement I made in truth.

Cikarang, 16 March 2023

(Felicia Limiardo)

ADVISOR'S APPROVAL FOR PUBLICATION

As a lecturer of the President University, I, the undersigned:

Advisor's Name	: Nur Hadisukmana, M.Sc
NIDN	: 0423076302
Study program	: Information Technology
Faculty	: Computing

declare that following thesis:

Title of undergraduate thesis	: Utilizing Motion	Sensors in	Creating a
	Movement-Based	Violin	Simulator
	Application in Andr	oid	
Undergraduate Thesis author	: Felicia Limiardo		
Student ID number	: 001201900036		

will be published in **journal** / **<u>institution's repository</u> / proceeding / unpublish**

Cikarang, 16 March 2023

(Nur Hadisukmana, M.Sc)

Check finpro **ORIGINALITY REPORT** 8% **3**% SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS **PRIMARY SOURCES** repository.president.ac.id 2% Internet Source developer.android.com 2% 2 Internet Source www.coursehero.com 1% 3 Internet Source oliviachen2020.wixsite.com

- 4 Oliviachen2020.wixsite.com Internet Source
 5 docand.com Internet Source
 6 autopilot-project.eu Internet Source
 1 %
- 7 apps.dtic.mil Internet Source <1%
- 8 acikbilim.yok.gov.tr Internet Source <1%
 - 9 Kishori Sharan, Peter Späth. "Learn JavaFX
 17", Springer Science and Business Media LLC,
 2022

11	"Trends in Artificial Intelligence: PRICAI 2016 Workshops", Springer Science and Business Media LLC, 2017 Publication	<1 %
12	publications.lib.chalmers.se	<1%
13	Roopesh Kevin Sungkur, Hansraj Bissessur, Krishna Camdoo. "SensorApp: the light at the end of the tunnel for visually impaired learners", Journal of Computers in Education, 2017 Publication	<1%
14	www.mobile-phones.co.uk	<1 %
15	fenix.tecnico.ulisboa.pt	<1%
16	www.diva-portal.org	<1%

M. Samir Abou El-Seoud, Islam A. T. F. Taj-Eddin. "Chapter 1 Developing an Android Mobile Bluetooth Chat Messenger as an Interactive and Collaborative Learning Aid",

Springer Science and Business Media LLC, 2017

Publication

18	www.techaheadcorp.com	<1%
19	"Hybrid Artificial Intelligence Systems", Springer Science and Business Media LLC, 2014 Publication	<1%
20	Md. Elias Hossain, Arshadina Umara Najib, Md. Zahidul Islam. "Combating Domestic Violence during COVID-19 Pandemic in Bangladesh: Using a Mobile Application integrated with an Effective Solution", 2020 23rd International Conference on Computer and Information Technology (ICCIT), 2020 Publication	<1 %
21	docshare02.docshare.tips	<1 %
22	freesound.org Internet Source	<1 %
23	repozitorij.etfos.hr Internet Source	<1 %
24	Lecture Notes in Computer Science, 2009. Publication	<1 %
25	repmus.ircam.fr	

		<1%
26	"Network Science and Cybersecurity", Springer Nature, 2014 Publication	<1 %
27	science.rsu.lv Internet Source	<1%
28	vdoc.pub Internet Source	<1%

Exclude quotes	Off	Exclude matches	Off
Exclude bibliography	On		

Stats

Average Perplexity Score: 56.450

A document's perplexity is a measurement of the randomness of the text

Burstiness Score: 79.438

A document's burstiness is a measurement of the variation in perplexity

Your sentence with the highest perplexity, "Playing music not only involves", has a perplexity of: 501

ABSTRACT

Playing music is good for the brain because it involves multiple areas of the brain simultaneously, such as the visual, motor, and auditory cortices. Regularly exercising these areas can lead to stronger problem-solving skills, higher cognitive abilities, and better memory functions.

However, as a beginner, learning to play musical instruments can be pretty intimidating. Not only are the instruments expensive, but it also requires a high amount of cognitive load to learn to play as well as reading the music sheet. The violin is an instrument known to be one of the hardest to learn because it places a heavy burden physically and mentally. Because of this, a lot of people have started to turn to mobile musical instrument simulators as a starting point, due to its convenience, practicality, and affordability. But the simulators present a new set of challenges in that they keep the users confined to the screen, which is not ideal for instruments like violin where movement is a big part of the playing experience. This violin simulator was developed with the goal of facilitating learning and for users to develop muscle memory. The hope is that by offloading the cognitive load to the body, users will have an easier time to learn.

In this application, users are able to play normal and accidental notes across two octaves (the 4th and 5th) and with 3 common musical techniques: Pizzicato, Staccato, and Legato. To start playing, users can click on one of the 8 buttons on screen and move

the phone left and right. To change octaves, users can move the phone up and down. To play accidental notes, users can hold the phone in landscape position.

Motion sensors - specifically accelerometer and gyroscope - were used in the development of this application. Because the accelerometer can only detect the acceleration value of the phone, users would need to move the phone rather quickly in order for the application to work.

Nevertheless, the initial testing stage results in a very positive outcome. Every feature that was tested worked as expected. However, it would work better with an additional supporting board attached to the phone, which is not in scope of this project.

This project is still very basic in nature and there can be a lot more features included for future development.

TABLE OF CONTENTS

Table	of Contents
PANEI	L OF EXAMINER APPROVALiv
STATE	MENT OF ORIGINALITYv
SCIEN	TIFIC PUBLICATION APPROVAL FOR ACADEMIC INTERESTvi
ADVIS	OR'S APPROVAL FOR PUBLICATIONvii
ABSTR	RACT viii
TABLE	E OF CONTENTSx
LIST C	DF TABLES xiii
LIST C	DF FIGURESxiv
INTRO	DUCTION17
1.1	Background17
1.2	Problem Statement
1.3	Research Objective
1.4	Scope and Limit
1.5	Methodology
1.6	Final Project Outline
LITER	ATURE STUDY
2.1	Violin and its workings
2.2	Android Studio

2.3	Sensors	28
2.3	3.1 Motion sensors	28
2.4	Simulators	32
2.4	4.1 Mobile Musical Instrument Simulator	35
2.5	Embodied or Situated Cognition	37
2.6	Related Work	42
2.6	5.1 Motion Vox	42
2.6	5.2 Music from Motion	43
2.7	Comparison Overview	44
SYSTE	EM ANALYSIS	46
3.1	System Overview	46
3.2	System Requirements	46
3.3	Software Requirements	46
3.4	Use Case Diagram	47
3.5	Use Case Narrative	47
3.6	Activity Diagram	52
SYSTE	EM DESIGN	54
4.1	User Interface Design	54
SYSTE	EM IMPLEMENTATION	58
5.1	User Interface Implementation	58
5.2	System Implementation	59

SYSTI	STEM TESTING	
6.1	Testing Device Specifications	74
6.2	Testing Scenario	75
CONC	CLUSION AND FUTURE WORKS	78
7.1	Conclusion	78
7.2	Future Work	79
REFE	RENCES	80

LIST OF TABLES

Table 2.1 Comparison overview of my music app with Motion Vox and the MIDI	
controller4	.4
Table 3.1 Use case narrative of playing a normal C note4	8
Table 3.2 Use case narrative of playing a C note in Pizzicato4	8
Table 3.3 Use case narrative of playing a C note in Staccato	.9
Table 3.4 Use case narrative of playing a C and D note in Legato	0
Table 3.5 Use case narrative of playing a C# note	1
Table 6.1 Testing device specifications 7	4
Table 6.2 Emulator specifications	5
Table 6.3 Testing scenarios for the features of the music app	5

LIST OF FIGURES

Figure 1.1 MusicAid, a touchscreen controller for the deaf used to compose digital
music
Figure 1.2 The brain areas involved in perceiving and producing music
Figure 1.3 MRI scans of a musician's brain showing greater cortical thickness in the
auditory, motor, and frontal cortices
Figure 1.4 Lean UX methodology
Figure 2.1 Parts of a violin
Figure 2.2 Acceleration applied to a device in relation to the force applied to the
sensor
Figure 2.3 Acceleration of a device influenced by gravity
Figure 2.4 Coordinate system used by the motion sensors
Figure 2.5 A static image of the virtual audience
Figure 2.6 A static image of the virtual judges panel
Figure 2.7 GarageBand showing multiple instruments audio to edit at once
Figure 2.8 Perfect Piano app in waterfall mode showing user how to play the song
Traumerei by Robert Schumman
Figure 2.9 A diagram of the bubble of reason when facing a complex situation, where
the consciousness draws on information from the environment to create a
representation model that they can infer and reason on
Figure 2.10 Components of the BigDog robot created by the Boston Dynamics39
Figure 2.11 A simplified flowchart of attentional redistribution in the brain based on
cognitive demands41
Figure 2.12 A screenshot of Motion Vox being used

Figure 2.13 The first prototype of the controller before the wiring and breadboard is
attached43
Figure 2.14 The second prototype of the controller, viewed from the top43
Figure 3.1 Use case diagram of the application47
Figure 3.2 Activity diagram of a typical user interaction
Figure 4.1 User interface of the application
Figure 4.2 The recommended way to hold the phone with a protective strap viewed
from the front
Figure 4.3 The ideal way of holding the phone (black) with a supportive board (green)
and a protective strap (blue) viewed from above
Figure 4.4 How to hold the phone with two hands without the supporting board or
protective strap
Figure 5.1 User Interface of the main activity
Figure 5.2 The accelerometer listener passing filtered values from the sensor to the
`onTranslation` method in MainActivity
Figure 5.3 The gyroscope listener passing values from the sensor to the `onRotation`
method in the MainActivity
Figure 5.4 The `onTranslation` method checking the current orientation of the phone
Figure 5.5 Determining the current orientation of the phone every time it changes6
Figure 5.6 The `portrait` method checking the movement of the phone
Figure 5.7 The `landscape` method checking the movement of the phone
Figure 5.8 The `reverseLandscape` method checking the movement of the phone63
Figure 5.9 The simplified version of the coordinate system for each orientation64

Figure 5.10 The `onRotation` method checking the rotation of the phone and
unregisters or registers the accelerometer accordingly
Figure 5.11 The code for the C button
Figure 5.12 The `moving_method` determines the current movement status of the
phone and the `sharp_method` determines the current audio status depending on the
current orientation of the phone67
Figure 5.13 The list of all audio files used in this program
Figure 5.14 Audios of the 4th octave being loaded to soundPool under the `onCreate`
method69
Figure 5.15 The flowchart for this application70
Figure 5.16 Waveforms of C4 and C5 being edited to be more stable and equal in
volume and pitch71
Figure 5.17 Waveforms of C4, C5, and C6 being edited72
Figure 5.18 Two waveforms of C5 audio sample with a zero crossing meeting point 72
Figure 5.19 Audio tracks of C5 overlapping while editing73