

IMPLEMENTATION OF DMAIC METHODS TO REDUCE SCRAP IN PLASTIC INJECTION MOLDING AREA AT PT.ABC INDONESIA

UNDERGRADUATE FINAL PROJECT

Submitted as one of the requirements to obtain Sarjana Teknik (S. T.)

By Denartha Randhika ID No. 004201900057

FACULTY OF ENGINEERING INDUSTRIAL ENGINEERING STUDY PROGRAM CIKARANG MAY, 2023

PANEL OF EXAMINER APPROVAL

The Panel of Examiners declare that the undergraduate thesis entitled "Implementation of DMAIC Methods to Reduce Scrap in Plastic Injection Molding Area at PT.ABC Indonesia" that was submitted by Denartha Randhika majoring Industrial Engineering from the Faculty of Engineering was assessed and approved to have passed the Oral Examination on 31th May 2023

Panel of Examiner

Ir. Adi Saptari, M.Sc., Ph.D.

Chair of Panel Examiner

Athina Sakina Ratum, S.T., M.Sc.

Examiner I

THESIS ADVISOR RECOMMENDATION LETTER

This thesis entitled "Implementation of DMAIC Methods to Reduce Scrap in Plastic Injection Molding Area at PT.ABC Indonesia" is prepared and submitted by Denartha Randhika in partial fulfillment of the requirements for the degree of Bachelor Degree in the Faculty of Engineering has been reviewed and found to have satisfied the requirements for a report fit to be examined. I therefore recommend this final project for Oral Defense.

Cikarang, Indonesia, May 31st, 2023

Ir. Andira Taslim M. T.

STATEMENT OF ORIGINALITY

In my capacity as an active student of President University and as the author of the

undergraduate thesis/final project/business plan stated below:

Name : Denartha Randhika

Student ID number : 004201900057

Study Program : Industrial Engineering

Faculty : Engineering

I hereby declare that my undergraduate thesis/final project/business plan entitled

"Implementation of DMAIC Methods to Reduce Scrap in Plastic Injection

Molding Area at PT.ABC Indonesia " is to the best of my knowledge and belief,

an original piece of work based on sound academic principles. If there is any

plagiarism, including but not limited to Artificial Intelligence plagiarism, is

detected in this undergraduate thesis/final project/business plan, I am willing to be

personally responsible for the consequences of these acts of plagiarism, and accept

the sanctions against these acts in accordance with the rules and policies of

President University.

I also declare that this work, either in whole or in part, has not been submitted to

another university to obtain a degree.

Cikarang, 31st May 2023

(Denartha Randhika)

iv

SCIENTIFIC PUBLICATION APPROVAL FOR

ACADEMIC INTEREST

As an academic community member of the President's University, I, the

undersigned:

Name : Denartha Randhika

Student ID number : 004201900057

Study program : Industrial Engineering

for the purpose of development of science and technology, certify, and approve to

give President University a non-exclusive royalty-free right upon my final report

with the title:

Implementation of DMAIC Methods to Reduce Scrap in Plastic Injection

Molding Area at PT.ABC Indonesia

With this non-exclusive royalty-free right, President University is entitled to

converse, to convert, to manage in a database, to maintain, and to publish my final

report. There are to be done with the obligation from President University to

mention my name as the copyright owner of my final report.

This statement I made in truth.

Cikarang, 31st May 2023

(Denartha Randhika)

V

ADVISOR'S APPROVAL FOR JOURNAL/INSTITUTION'S REPOSITORY

As an academic community member of the President's University, I, the undersigned:

Name : Ir. Andira Taslim M. T.

ID number/ NIDN : 0426037002

Study program : Industrial Engineering
Faculty : Faculty of Engineering

declare that following thesis:

Title of thesis : Implementation of DMAIC Methods to Reduce Scrap in

Plastic Injection Molding Area at PT.ABC Indonesia

Thesis author : Denartha Randhika

Student ID number : 004201900057

will be published in journal/institution's repository.

Cikarang, 31st May 2023

(Ir. Andira Taslim M. T.)

Implementation of DMAIC Methods to Reduce Defect in Plastic Injection Molding Area at PT.ABC Indonesia

By:

Denartha Randhika ID No. 004201900057

Approved by

Ir. Andira Taslim M. T.

Final Project Advisor

Ir. Andira Taslim M. T.

Study Program Head of Industrial Engineering

SIMILIARITY CHECKING RESULT

Final Project - Denartha Randhika - IMPLEMENTATION OF DMAIC METHODS TO REDUCE SCRAP IN PLASTIC INJECTION MOLDING AREA AT TOY MANUFACTURING COMPANY, INDONESIA

ORIGINAL	ITY REPORT				
7% SIMILAR	ó RITY INDEX	4% INTERNET SOURCES	4% PUBLICATIONS	2% STUDENT P	'APERS
PRIMARY	SOURCES				
1	reposito	ry.president.ac.	id		1%
2	docoboo				<1%
3		Mitra. "Fundan and Improveme		•	<1%
4		ional Journal of 1, Issue 3 (2012	•	na,	<1%
5	duepubl Internet Source	ico.uni-duisburg	g-essen.de		<1%
6	dokume Internet Source				<1%
7	The TQN 09-19) Publication	Л Magazine, Vol	ume 17, Issue	e 1 (2006-	<1%

AI BASED PLAGIARISM CHECKING RESULT

Stats

Average Perplexity Score: 304.460

A document's perplexity is a measurement of the randomness of the text

Burstiness Score: 483.091

A document's burstiness is a measurement of the variation in perplexity

Your sentence with the highest perplexity, "Production activity in PT.ABC Indonesia is normal production.", has a perplexity of: 2059

© 2022-2023 GPTZero

ABSTRACT

PT.ABC Indonesia has a project to reduce high number of scraps in Primary Production area. Plastic Injection Molding area contributes over 50% from total scrap in Primary Production area and resulted scrap value that total Rp. 378.803.000 in first quarter of 2023. These scraps happen because of the changeover process procedure. This research use Lean Six Sigma approach through DMAIC Methodology. Several improvements are implemented new procedure for color change and tool change without purging process and slide the hopper when Daily Schedule Adherence achieve 95%. The improvement resulted 57% reduction of scrap in Plastic Injection Molding. In detail, color change and tool change procedure reduce 62% scrap, While the slide hopper process was reduce wrong color scrap by 16%. By this research, the company already saving the cost Rp. 49.237.000 and predicted will save up to Rp. 434.660.000 by the end of year 2023.

Keywords: DMAIC, Lean, Six Sigma, Plastic Injection Molding, Purging, Scrap, Wrong Color

ACKNWOLEDGEMENT

In the name of Sanghyang Adi Buddha, the most Gracious and the most merciful, all praises to Buddha for the strengths and His blessing in completing this final project report. This research has been kept on track and been seen through to completion with the support and encouragement of numerous people. At the end, I would like to express my gratitude to:s my gratitude to:

- Mam Ir. Andira Taslim M.T. as my thesis advisor who give me a lot of suggestion, advice, and support from the beginning of my final project until I finish this final project. Thank you for being a very kind mentor for me and inspiring me to do better.
- 2. My beloved family: My dad, Mom, Koko Dimas, Cece Ayu, Cece Lili who always support me in all things I have done. I wouldn't have arrived at this point if they were not supporting me. I love you 3000 in every universe.
- 3. All industrial engineering study program lecturer who taught me from the beginning of my university until now I am reaching the end of my university life. Thankyou for sharing the preciouse knowledge to me.
- 4. All of PT.ABC Indonesia employee especially Mr.AM, Mr.WDC, Ms.GS, Mr.SW as my internship supervisor and manager. Thankyou for all the internship knowledge and experiences.
- 5. My dearest friend, Gissa A. Supit who make me feeling lovely and burn my spirit to finish this final project.
- 6. Two Musketeers. Arifky Aldi & Prima Yahya Yudistira, thanks for the coloring my university life with all those crazy party that support my worklife balance.
- 7. Industrial Engineering 2019, Mr. & Ms. President University, Ikatan Koko Cici Jawa Barat, PUBA. Thankyou for the support. Let us graduate together!
- 8. Others that I cannot mention one by one. Thankyou for all support, help, and experience that given to me.

Sincerely,

Denartha Randhika (Mr.Koko)

TABLE OF CONTENTS

PANEL OF	EXAMINER APPROVAL	ii
FINAL PRO	OJECT ADVISOR RECOMMENDATION LETTER	iii
STATEME	NT OF ORIGINALITY	iv
SCIENTIF	IC PUBLICATION APPROVAL FOR ACADEMIC INTERES	STv
ADVISOR'	S APPROVAL FOR PUBLICATION	vi
SIMILIAR	ITY CHECKING RESULT	viii
AI BASED	PLAGIARISM CHECKING RESULT	ix
ABSTRAC'	Т	X
ACKNWO	LEDGEMENT	xi
TABLE OF	CONTENTS	. xii
LIST OF T	ABLES	XV
LIST OF F	IGURES	xvi
LIST OF T	ERMINOLOGIES	cviii
CHAPTER	I INTRODUCTION	1
1.1 Pro	oblem Background	1
	oblem Statement	
1.3 Ob	jective	2
1.4 Sco	ope	3
	sumptions	
1.6 Res	search Outline	3
CHAPTER	II LITERATURE STUDY	5
2.1 Lea	an Six Sigma	5
2.1.1	Lean	
2.1.2	Six Sigma	
2.1.3	The Integration of Lean and Six Sigma	
	<i>U</i>	

2.2	Quality	9
2.3	Quality Control	10
2.4	DMAIC Methodology	11
2.5	7 Quality Control Tools	14
2.6	Process Capability	21
2.7	Plastic Injection Molding	22
СНАРТ	TER III RESEARCH FRAMEWORK	27
3.1	Research Methodology	27
3.1	.1 Initial Observation	28
3.1	.2 Problem Identification	28
3.1	.3 Literature Study	28
3.1	.4 Data Collection & Analysis	29
3.1	.5 Conclusion and Recommendation	29
3.2	Research Framework	30
СНАРТ	TER IV DATA COLLECTION & ANALYSIS	32
4.1	Research Overview	32
4.1	.1 Production Flow in PT.ABC Indonesia	32
۷	4.1.1.1 Plastic Stream	33
۷	4.1.1.2 Head Stream	33
۷	4.1.1.3 Fabric Stream	33
۷	4.1.1.4 Final Assembly Stream	33
4.1	.2 Introduction to Project	33
4.2	Raw Data Collection	34
4.3	Analysis: DMAIC Methodology	36
4.3	3.1 Define Phase	36
۷	4.3.1.1 Problem Statement	36
۷	4.3.1.2 Business Flow Process	38
۷	4.3.1.3 Business Case	39
۷	4.3.1.4 Goals and Scope of the Project	41
۷	4.3.1.5 Project Team	42
۷	4.3.1.6 Timeline	42
4.3	Measure Phase	43
_	4 3 2.1 Baseline Performance	43

4.3.3	An	alyze Phase	45
4.3	.3.1	Root Cause Analysis	46
4.3	.3.2 R	oot Cause Verification	50
4.3.4	Im _]	prove Phase	52
4.3	.4.1	Generating Alternative Solution	52
4.3	.4.2	Solution Selection	53
4.3	.4.3	Improvement Plan	55
4.3	.4.4	Implementation	56
4.3.5	Co	ntrol Phase	59
4.3	.5.1	Standard Operation for Change Over	59
4.3	.5.2	Stop PVC Machine Procedure	61
4.3	.5.3	Empty Barrel Reporting	61
4.3	.5.4	Scrap Audit	62
4.4 Com	nparisc	on Before and After Improvement and Saving	62
4.4.1	Sci	rap from East Plant Manufacturing by Area	62
4.4.2	Sci	rap Breakdown from Plastic Injection Molding Area	64
4.4.3	Co	st Saving	65
4.5 R	Room f	or Improvement	66
4.5.1	To	ol Change Scheduling	66
4.5.2	Pig	ment	67
4.5.3	Wr	ong Color Utilization	67
CHAPTE	RVC	CONCLUSION & RECCOMENDATION	69
5.1 C	Conclus	sion	69
5.2 R	Recomi	nendations	70
REFERE	NCE.		71

LIST OF TABLES

Table 2. 1 Relationship Between Component Quality and Final Product Quality	7.8
Table 2. 2 Cost Benefit Scale Meaning	. 14
Table 2. 3 Types of Graphs and the Purpose	. 20
Table 4. 1 Types of Scrap	. 34
Table 4. 2 Scrap Value Quarter 1 2023	. 35
Table 4. 3 Primary Production Area Scrap	. 35
Table 4. 4 Timeline of Project	. 42
Table 4. 5 Root Cause Verification	. 50
Table 4. 6 Alternative Solution	. 52
Table 4. 7 Solution Selection Score	. 53
Table 4. 8 Improvement Action Plan	. 55
Table 4. 9 Cost Saving Calculation	. 65

LIST OF FIGURES

Figure 2. 1 Lean Management & Six Sigma Improvement Nature	9
Figure 2. 2 Solution Selection Matrix	13
Figure 2. 3 Pareto Diagram	15
Figure 2. 4 Cause and Effect Diagram	16
Figure 2. 5 Histogram	17
Figure 2. 6 Control Chart	17
Figure 2. 7 Xbar – R Chart	19
Figure 2. 8 Scatter Diagram	20
Figure 2. 9 Cp Concept	21
Figure 2. 10 C _{pk} index	22
Figure 2. 11 Plastic Injection Molding Machine Diagram	24
Figure 2. 12 Plastic Scrap.	26
Figure 3. 1 Research Methodology	27
Figure 3. 2 Research Framework	31
Figure 4. 1 Production Flow	32
Figure 4. 2 Pareto Chart of Scrap per Production Area 2023	37
Figure 4. 3 Scrap Value Primary Production Area 2023	37
Figure 4. 4 Process Flow Plastic Injection Molding Area	38
Figure 4. 5 Plastic Injection Molding Scrap Value Variation	40
Figure 4. 6 Pie Chart Top 5 Scrap Value Plastic Injection Molding	40
Figure 4. 7 SMART Goals	41
Figure 4. 8 Weekly Scrap Plastic Injection Molding January – March 2	2023 44
Figure 4. 9 Weekly Purging Scrap Plastic Injection Molding January –	March 2023
	44
Figure 4. 10 Weekly Wrong Color Scrap Plastic Injection Molding Janu	ary – March
2023	45
Figure 4. 11 Wrong Color Scrap Fishbone Diagram	47
Figure 4 12 Factor in Method Category	47

Figure 4. 13 Factor in Machine Category	48
Figure 4. 14 Factor in Material Category	48
Figure 4. 15 Purging Scrap Fishbone Diagram	49
Figure 4. 16 Factor in Method Category	49
Figure 4. 17 Factor in Machine Category	50
Figure 4. 18 Color Change and Tools Change Illustration	51
Figure 4. 19 Solution Selection Matrix	55
Figure 4. 20 Current Changeover Procedure	56
Figure 4. 21 Color Change without Purging Illustration	57
Figure 4. 22 Tool Change without Purging Illustration	58
Figure 4. 23 Hopper Position when DSA Achieve 95%	58
Figure 4. 24 SOP Changeover Plastic Injection Molding	60
Figure 4. 25 SOP Stop PVC Machine	61
Figure 4. 26 Empty Barrel Reporting	61
Figure 4. 27 Scrap Audit	62
Figure 4. 28 Scrap Trend East Plant Manufacturing by Area	63
Figure 4. 29 Scrap Value Trend East Plant 2023	63
Figure 4. 30 Weekly Scrap Plastic Injection Molding Area 2023	64
Figure 4. 31 Weekly Wrong Color Scrap and Purging Scrap 2023	64
Figure 4. 32 Comparison Week 1 – 14 between 2022 Versus 2023	65
Figure 4. 33 Proposed Scheduling for Tool Change	66
Figure 4. 34 Pigment Black & Pigment Gold	67
Figure 4. 35 Wrong Color Utilization Process	68