

A STUDY OF EMISSION INVENTORY OF CO₂e IN MANUFACTURING PRINTING COMPANY (CASE STUDY: PT. XYZ)

UNDERGRADUATE FINAL PROJECT

Submitted as one of the requirements to obtain Sarjana Teknik

By:

MEIGAIL ENDREW SAROBA 018201900011

FACULTY OF ENGINEERING
ENVIRONMENTAL ENGINEERING STUDY PROGRAM
CIKARANG
AUGUST 2023

PANEL OF EXAMINER APPROVAL

The Panel of Examiners declare that the undergraduate thesis entitled "A Study of Emission Inventory of CO₂e In Manufacturing Printing Company (Case Study: PT. XYZ)" that was submitted by Meigail Endrew Saroba majoring in Environmental Engineering from the Faculty of Engineering was assessed and approved to have passed the Oral Examination on August 31st, 2023

Panel of Examiner

Yosef Barita Sar Manik, S.T., M.Sc., Ph.D.

Chairman of Panel Examiner

Ir. Temmy Wikaningrum, M.Si.

Examiner 1

STATEMENT OF ORIGINALITY

In my capacity as an active student of President University and as the author of I the thesis/final project/business plan (underline that applies) stated below:

Name

: Meigail Endrew Saroba

Student ID number

: 018201900011

Study Program

: Environmental Engineering

Faculty

: Engineering

I hereby declare that my thesis/<u>final project</u>/business plan entitled "A Study of Emission Inventory of CO₂e In Manufacturing Printing Company (Case Study: PT. XYZ)" is to the best of my knowledge and belief, an original piece of work based on sound academic principles. If there is any plagiarism detected in this thesis/<u>final project</u>/business plan, I am willing to be personally responsible for the consequences of these acts of plagiarism, and will accept the sanctions against these acts in accordance with the rules and policies of President University.

I also declare that this work, either in whole or in part, has not been submitted to another university to obtain a degree.

Cikarang, August 10, 2023

Meigail Endrew Saroba

018201900011

FINAL PROJECT REPORT APPROVAL

A STUDY OF EMISSION INVENTORY OF CO₂ e IN MANUFACTURING PRINTING COMPANY (CASE STUDY: PT. XYZ)

By

Meigail Endrew Saroba

018201900011

Approved by

Rijal Hakiki, S.S.T., M.Sc

Final project Supervisor

Yosef Barita Sar Manik, S.T., M.Sc., Ph.D.

Head of Environmental Engineering Study

Program

SCIENTIFIC PUBLICATION APPROVAL FOR ACADEMIC INTEREST

As an academic community member of the President's University, I, the undersigned:

Name

: Meigail Endrew Saroba

Student ID number

: 018201900011

Study program

: Environmental Engineering

for the purpose of development of science and technology, certify, and approve to give President University a non-exclusive royalty-free right upon my final report with the title:

A STUDY OF EMISSION INVENTORY OF CO₂e IN MANUFACTURING PRINTING COMPANY (CASE STUDY: PT. XYZ)

With this non-exclusive royalty-free right, President University is entitled to converse, to convert, to manage in a database, to maintain, and to publish my final report. There are to be done with the obligation from President University to mention my name as the copyright owner of my final report. This statement I made in truth.

Cikarang, August 10, 2023

Meigail Endrew Saroba

018201900011

ADVISOR APPROVAL FOR PUBLICATION

As an academic community member of the President's University, I, the undersigned:

Advisor Name

: Rijal Hakiki, S.S.T., M.Sc

NIDN

: 201601582

Study program

: Environmental Engineering

Faculty

: Engineering

declare that following Final project:

Title of Final project :"A Study of Emission Inventory of CO2e In

Manufacturing Printing Company (Case Study: PT. XYZ)"

Final project author

: Meigail Endrew Saroba

Student ID number

: 018201900011

will be published in journal / <u>institution's repository</u> / proceeding / unpublish /

Cikarang, August 16, 2023.

Rijal Hakiki, S.S.T., M.Sc

TURNITIN TEST RESULT

A Study Of Emission Inventory Of CO2 In Manufacturing Printing Company (Case Study: PT. XYZ)

ORIGINALITY F	REPORT	-	-	
14 SIMILARITY	% INDEX	13% INTERNET SOURCES	2% PUBLICATIONS	8% STUDENT PAPERS
PRIMARY SOUP	RCES			
	posito ernet Sourc	ry.president.ac	.id	5%
	ww.res	searchgate.net		1 %
	ubmitte dent Paper	ed to President	University	1 %
	ww.na	tionalgeograph	nic.org	1 %
	ww.ad	orc.gr.jp		1 %
	WW.SCi	ence.gov		1 %
	afiado ernet Sourc			1 %
Te	ubmitte echnolo dent Paper		ey Institute of	f 1%
9	gyanko ernet Sourc	sh.ac.in		<1%

GPTZERO TEST RESULT

Your text is likely to be written entirely by a human

The nature of AI-generated content is changing constantly. As such, these results should not be used to punish students. While we build more robust models for GPTZero, we recommend that educators take these results as one of many pieces in a holistic assessment of student work. See our FAQ for more information.

GPTZero Model Version: 2023-08-19

A STUDY OF EMISSION INVENTORY OF CO2e IN MANUFACTURING PRINTING COMPANY (CASE STUDY: PT.

XYZ) A final project report presented to the Faculty of Engineering By Meigail Endrew Saroba 018201900011 In partial fulfillment of the requirements of the degree Bachelor of Science in Environmental Engineering President University August 2023 ii STATEMENT OF ORIGINALITY In my capacity as an active student of President University and as the author of the thesis/final project/business plan (underline that applies) stated below: Name: Meigail Endrew Saroba Student ID number: 018201900011 Study Program: Environmental Engineering Faculty: Engineering I hereby declare that my thesis/final project/business plan entitled "A Study of Emission Inventory of CO2e In Manufacturing Printing Company (Case Study: PT.

XYZ)" is to the best of my knowledge and belief, an original piece of work based on sound academic principles.

Average Perplexity Score: 159.692

A document's perplexity is a measurement of the randomness of the text

Burstiness Score: 171.104

A document's burstiness is a measurement of the variation in perplexity

Your sentence with the highest perplexity, "Author's lovely family.", has a perplexity of: 740

ABSTRACT

As one of Indonesia's printing companies, PT XYZ strives to meet consumer demand by producing as many as they can. They consistently give us large quantities of completed goods each day along with huge emissions and trash. Looking at that situation, it is clear that the industrial process might have an effect on the environment. In light of this, the goal of this study is to determine and estimate the possible effects of emissions from the energy supply on the printing manufacturing process and environmental impact on land based on volatile organic compound materials. The method of measuring the amount of emissions is called emission inventory. ReCiPe 2016 is a method that will use to analyse the impact through manual calculation based on Green House Gases Protocol. Based on the above data it can be concluded that the total emissions produced by PT. XYZ in 2021 and 2022 are 1,616 tons of CO₂e and 1,722 tons of CO₂e based on electricity purchases paid annually by PT. XYZ. However, calculations from the emission inventory modeling carried out show that the total emissions produced by PT. XYZ in 2021 and 2022 is 1,405 tons of CO₂e and 1,389 tons of CO₂e.

Keywords: Printing Process, Emission Inventory, Volatile Organic Compunds, Green House Gases Protocol.

ACKNOWLEDGMENT

Since the author was able to finish the current Final project period by learning a great deal of new information that will be very helpful for author future career development, the author wishes to express his sincere gratitude to God the Almighty for His mercy and grace. Without a lot of support, this report is unlikely to be completed. Consequently, the author would like to thank the following:

- 1. Author's lovely family. Thank you for always believing and loving the author.
- 2. Mr. Yosef Barita Sar Manik, S.T., M.Sc., Ph.D as the Head of Environmental Engineering Study Program and Mr. Rijal Hakiki as the Final project advisor who gave author a lot of insight, motivation, enlightenment, and his time to guide the author's Final project progress.
- 3. All Lecturers of Environmental Engineering at President University for all the knowledge that has been given so that the author can reach this stage.
- 4. All the staff from PT. XYZ who has provided guidance and direction to carry out the data collection
- 5. Future Leader. Big thanks to Jihan CP, Ine Nurliani, Nabila Santika, Galih Bhara, Bima Ramadhan, and Reni Dwi for all of your prayers, support, and also jokes that make the author feel loved and happy in his Final project time.
- 6. ENVINITE19. Thank you for all the support. Let's fight and support each other until we can hold a bachelor's degree
- 7. Families of Environmental Engineering. We appreciate your many prayers and words of encouragement for the author.
- 8. Angel and Kak Rizti who always be the support system and the best team

during the data collection steps in PT. XYZ

9. Agnes and Lidya who always give me a strength word to continue and

finished this Final project, also become the place for me to release my

stress

10. PU Sibuk. Claresta, Batara, Detta, Nanda, Acel for always be the long

lasting friends. The person who always be there for me even we have a

tight schedule that make us super busy.

11. IKHLULUSNIH! Big thanks to Gabriella, Angie, Raja, and Ranantha for

always be there for me since 2019 being together in the same organization

until I can finished this Final project.

12. All friend that I can not mentioned one by one. You guys are amazing, you

are the reason I can be here, finishing my Final project.

The author is aware that this Final project is far from faultless. I'm hoping that

this Final project will be helpful in the future.

Cikarang, August 10, 2023

Meigail Endrew Saroba

018201900011

TABLE OF CONTENT

STATEMENT OF ORIGINALITY	II
FINAL PROJECT REPORT APPROVAL	IV
SCIENTIFIC PUBLICATION APPROVAL	V
FOR ACADEMIC INTEREST	V
ADVISOR APPROVAL FOR PUBLICATION	VI
TURNITIN TEST RESULT	VII
GPTZERO TEST RESULT	VIII
ABSTRACT	IX
ACKNOWLEDGMENT	X
TABLE OF CONTENT	XII
LIST OF TABLES	XIV
LIST OF FIGURES	XV
1 INTRODUCTION	1
1.1 Background	1
1.2 Problem Statements	2
1.3 Objectives	
1.4 Scope and Limitations	3
1.4.1 Scope	3
1.4.2 Limitation	3
2 LITERATURE REVIEW	4
2.1 Green House Gases	4
2.2 Carbon Dioxide	5
2.3 Emission Inventory	7
Emission Inventory Methodology	8
3 RESEARCH METHOD	10
3.1 Research Frame work	10
3.2 Flow Chart of Process	11

3.3 Data Collection Method	13
3.3.1 Functional Unit	13
3.3.2 Sampling Method	13
3.3 Design Calculation Method	14
3.3.1 Tier Calculation	14
3.4 Data analysis method	16
4 RESULTS AND DISCUSSIONS	17
4.1 Inventory Analysis	17
a. Tier 1 (Electricity Consumption from IT Devices 2021 vs 2022)	17
b. Tier 1 (Electricity Consumption from Cooler and CCTV 2021 vs 2022)	18
c. Tier 1 (Electricity Consumption from Lamp 2021 vs 2022)	19
d. Tier 1 (Electricity Consumption from AC 2021 vs 2022)	21
e. Tier 1 (Electricity Consumption from Machine 2021 vs 2022)	22
f. Tier 1 (Fuel Consumption from transportation 2021 vs 2022)	23
g. Tier 2 (Purchased Electricity 2021 vs 2022)	26
h. Tier 3 (Hazardous Waste 2021 VS 2022)	27
4.2 Emission Contributor Analysis	28
4.3 Carbon Tax	30
4.4 Discussion	31
5 CONCLUSIONS AND RECOMMENDATIONS	32
5.1 Conclsions	32
5.2 Recommendations	33
REFERENCES	34
APPENDIX A LIST OF MACHINES	37
APPENDIX A PHOTO OF MACHINES	38

LIST OF TABLES

Table 1	Electricity Consumption from IT Devices 2021 vs 2022	17
Table 2	Electricity Consumption from Cooler and CCTV 2021 vs 2022	18
Table 3	Electricity Consumption from Lamp 2021 vs 2022	20
Table 4	Electricity Consumption from AC 2021 vs 2022	21
Table 5	Electricity Consumption from Machine 2021 vs 2022	22
Table 6	Fuel Consumption 2021 vs 2022	24
Table 7	Electricity Consumption from SCOPE 1 2021 vs 2022	25
Table 8	Purchased Electricity 2021 vs 2022	26
Table 9	Hazardous Waste (B3) 2021 vs 2022	27

LIST OF FIGURES

Figure 1	Research Framework	10
Figure 2	Flow Chart of Process	11
Figure 3	Pareto Electricity Consumption 2021	28
Figure 4	Pareto Electricity Consumption 2022	29
Figure 5	Flexo Machine E280	38
Figure 6	Flexo Machine E410	38
Figure 7	Chiller	39
Figure 8	Machines Duport Cyrel 1000 ECDLF	39
Figure 9	Letter Press Machine	40
Figure 1	0 Die Cut Label Man	40
Figure 1	Machine Kodak Flexcel NX Imager	41
Figure 1	2 Plate Washer (Concept 305 DW)	41
Figure 1	3 Compressor Unit	42