

# DESIGN OF PUSHBACK TUG BODY AND FRAME FOR DOUBLE NOSEWHEEL AIRCRAFT TYPES WITH MAXIMUM WHEEL DIAMETER OF $700 \mathrm{MM}$

## **UNDERGRADUATE THESIS**

Submitted as one of the requirements to obtain

Sarjana Teknik

By:

FARREL DAFFAYU NANDRA

003201900014

FACULTY OF ENGINEERING

MECHANICAL STUDY PROGRAM

CIKARANG

SEPTEMBER, 2023

### PANEL OF EXAMINER APPROVAL

The Panel of Examiners declare that the undergraduate thesis entitled **DESIGN OF PUSHBACK TUG BODY AND FRAME FOR DOUBLE NOSEWHEEL AIRCRAFT TYPES WITH MAXIMUM WHEEL DIAMETER OF 700MM** that was submitted by Farrel Daffayu Nandra majoring in Mechanical Engineering from the Faculty of Engineering was assessed and approved to have passed the Oral Examination on 14 September 2023

**Panel of Examiner** 

RSadig

Dr.Eng. Lydia Anggraini, S.T., M.Eng

**Chair of Panel Examiner** 

Dr.Azhari Sastranegara, B.Eng, M.Eng

**Examiner I** 

#### STATEMENT OF ORIGINALITY

In my capacity as an active student of President University and as the author of the <u>undergraduate</u> <u>thesis</u>/final project/business plan stated below:

Name : Farrel Daffayu Nandra

Student ID number : 003201900014

Study Program : Mechanical Engineering

Faculty : Engineering

I hereby declare that my undergraduate thesis/final project/business plan entitled " **DESIGN OF PUSHBACK TUG BODY AND FRAME FOR DOUBLE NOSEWHEEL AIRCRAFT TYPES WITH MAXIMUM WHEEL DIAMETER OF 700MM**" is, to the best of my knowledge and belief, an original piece of work based on sound academic principles. If there is any plagiarism, including but not limited to Artificial Intelligence plagiarism, is detected in this undergraduate thesis/final project/business plan, I am willing to be personally responsible for the consequences of these acts of plagiarism, and accept the sanctions against these acts in accordance with the rules and policies of President University.

I also declare that this work, either in whole or in part, has not been submitted to another university to obtain a degree.

Cikarang, 14 September 2023

Farrel Daffayu Nandra

### THESIS APPROVAL

# DESIGN OF PUSHBACK TUG BODY AND FRAME FOR DOUBLE NOSEWHEEL AIRCRAFT TYPES WITH MAXIMUM WHEEL DIAMETER OF 700MM

By

## Farrel Daffayu Nandra

003201900014

Approved by

Drs. Nanang Ali Sutisna M.Eng

Thesis Advisor

Dr.Eng. Lydia Anggraini, S.T., M.Eng

RSadig

Head of Study Program Mechanical

Engineering

### SCIENTIFIC PUBLICATION APPROVAL FOR ACADEMIC INTEREST

As a student of the President University, I, the undersigned:

Name : Farrel Daffayu Nandra

Student ID number : 003201900014

Study program : Mechanical Engineering

for the purpose of development of science and technology, certify, and approve to give President University a non-exclusive royalty-free right upon my final report with the title:

# DESIGN OF PUSHBACK TUG BODY AND FRAME FOR DOUBLE NOSEWHEEL AIRCRAFT TYPES WITH MAXIMUM WHEEL DIAMETER OF 700MM

With this non-exclusive royalty-free right, President University is entitled to converse, to convert, to manage in a database, to maintain, and to publish my final report. There are to be done with the obligation from President University to mention my name as the copyright owner of my final report.

This statement I made in truth.

Cikarang,14 September 2023

Farrel Daffayu Nandra

#### ADVISOR'S APPROVAL FOR PUBLICATION

As a lecturer of the President University, I, the undersigned:

Advisor's Name : Nanang Ali Sutisna, M. Eng

NIDN : 20171000720

Study program : Mechanical Engineering

Faculty : Engineering

declare that following thesis:

Title of undergraduate thesis : Design of pushback tug body and frame for double

nosewheel aircraft types with maximum wheel diameter of

700mm

Undergraduate Thesis author : Farrel Daffayu Nandra

Student ID number : 003201900014

will be published in journal / institution's repository / proceeding

Cikarang,14 September 2023

Nanang Ali Sutisna, M. Eng

# TURNITIN TEST RESULT

# Thesis Farrel Daffayu Nandra

| ORIGINALITY REPORT            |                        |                    |                     |
|-------------------------------|------------------------|--------------------|---------------------|
| 8%<br>SIMILARITY INDEX        | 9%<br>INTERNET SOURCES | 1%<br>PUBLICATIONS | %<br>STUDENT PAPERS |
| PRIMARY SOURCES               |                        |                    |                     |
| 1 ptm.ft.u<br>Internet Source |                        |                    | 1,9                 |
| 2 www.hy Internet Source      | dropa.de               |                    | 1,9                 |
| 3 www.ge                      | eksforgeeks.org        | S                  | 1,9                 |
| 4 byjusexa                    | amprep.com             |                    | 1 9                 |
| 5 byjus.co                    | <b>m</b><br>ce         |                    | 1 9                 |
| 6 issuu.co                    |                        |                    | 1 9                 |
| 7 www.lin                     | earmotiontips.c        | om                 | 1 9                 |
| 8 WWW.CO                      | ursehero.com           |                    | <19                 |
| 9 worldwig                    | descience.org          |                    | <19                 |

#### **GPT TEST RESULT**

# Your text is likely to be written entirely by a human



The nature of Al-generated content is changing constantly. As such, these results should not be used to punish students. While we build more robust models for GPTZero, we recommend that educators take these results as one of many pieces in a holistic assessment of student work. See our <u>FAQ</u> for more information.

GPTZero Model Version: 2023-07-19

DESIGN OF PUSHBACK TUG BODY AND FRAME FOR DOUBLE NOSEWHEEL AIRCRAFT TYPES WITH MAXIMUM WHEEL DIAMETER OF 700MM

UNDERGRADUATE THESIS

Submitted as one of the requirements to obtain

Sarjana Teknik

By:

FARREL DAFFAYU NANDRA

#### **Stats**

Average Perplexity Score: 1064.195

A document's perplexity is a measurement of the randomness of the text

**Burstiness Score: 2607.119** 

A document's burstiness is a measurement of the variation in perplexity

Your sentence with the highest perplexity, "Examiner I", has a perplexity of: 20894

#### **ACKNOWLEDGEMENT**

Praise and gratitude for the presence of Allah SWT, for all blessings, grace, and gifts that have provided knowledge, experience, strength, patience, and opportunities to researchers so that they can complete this thesis. However, the researcher realizes that without the help and support of various parties, the preparation of this thesis cannot go well. Until the completion of writing this thesis has received a lot of help time, energy and thoughts from many parties. In this regard, on this occasion please allow the researcher to express his deepest gratitude to:

- 1. Both parents, my beloved father Erinandra and my beloved mother Yessy Ariani John, have been extraordinary parents in educating me all this time and also provided spirit, prayers, support, and money to pay for school from elementary school to college today.
- 2. Dr. Eng. Lydia Anggraini, S.T., M.Eng as the head of the mechanical engineering study program at President University and the organization that always provides smoothness during my education at President University.
- 3. Mr. Drs. Nanang Ali Sutisna, M. Eng as the supervisor who provided knowledge, time and energy to guide me during the process of writing the thesis
- 4. Lecturers of the mechanical engineering department who have provided useful knowledge for my future.
- 5. Mechanical engineering friends of President University class of 2019 who gave me many good memories during my study in mechanical engineering. M Solidarity Forever.
- 6. Last but not least, I wanna thank me,I wanna thank me for believing in me,I wanna thank me for doing all this hard work,I wanna thank me for having no days off,I wanna thank me for, for never quitting,I wanna thank me for always being a giver and tryna give more than I receive,I wanna thank me for tryna do more right than wrong,I wanna thank me for just being me at all times.

May Allah SWT, reward with all the goodness of the world and ahirat for the sincerity and kindness of all parties who have been given to researchers. The researcher hopes that this thesis can be useful for all those who read it, especially the development of Mechanical Engineering. The researcher realizes that there are still many shortcomings and imperfections in this thesis research. For this reason, researchers expect criticism and suggestions to improve in the future. The

researcher would also like to thank all parties for their attention and encouragement during the thesis completion process.

Cikarang,

Farrel Daffayu Nandra

#### **ABSTRACT**

Aircraft is one of the most frequently used transportation by humankind today. In line with the technological development of the transportation industry, the type of air transportation for the community is considered more effective and efficient than land and water transportation. The aviation industry currently has various tools with different functions for aircraft maintenance and flight process. Aircraft Support is divided into various forms according to its function, one of which is the Pushback Car. Pushback Cars play a significant supporting role in helping aircraft so that they are not misdirected when exiting the parking area so that there are no collisions between aircraft. While the increase in technology is increasingly sophisticated, Aircraft Support is also positively affected by the rapid development of technology. PT.XYZ is currently producing a Pushbcak Car that has been innovated to be unmanned and not in the form of a car called Pushback Tug. All aircraft Pushback activities will be controlled via Remote Control. To make this all happen, a design process is needed before production. In the Pushback Tug design process will use the Solidworks computer program. The simulation is also carried out to ensure safety usage and reduce unnecessary costs due to product failure. The finite element analysis simulation will be carried out using the ANSYS program and will provide safety results. The simulation results show that ASTM A36 material is a suitable material for the Pushback Tug with a body von-mises stress of 120.82 Mpa at a load of 17 tons and a frame von-mises stress of 111.79 Mpa at a load of 7 tons. The hydraulic cylinder at a pressure of 1200 N/cm<sup>2</sup> has a force of 166,168.8 N during extension and 81,388.8 N during retraction.

Keywords: Aircraft Suppot, Pushback Car, Pushback Tug, Analysis

# TABLE OF CONTENT

| PANEL  | OF EXAMINER APPROVAL              | 2                            |
|--------|-----------------------------------|------------------------------|
| STATE  | MENT OF ORIGINALITY               | 3                            |
| SCIEN  | ΓΙFIC PUBLICATION APPROVAL FOR AC | ADEMIC INTEREST5             |
| ADVIS  | OR'S APPROVAL FOR PUBLICATION     | 6                            |
| TURNI  | TIN TEST RESULT                   | 7                            |
| GPT TE | EST RESULT                        | 8                            |
| ACKNO  | OWLEDGEMENT                       | 9                            |
| ABSTR  | ACT                               | 11                           |
| TABLE  | OF CONTENT                        | 12                           |
| LIST O | F FIGURE                          | 14                           |
| LIST O | F TABLE                           | 16                           |
| СНАРТ  | ER I INTRODUCTION                 | Error! Bookmark not defined. |
| 1.1    | Background                        | Error! Bookmark not defined. |
| 1.2    | Problem Statement                 | Error! Bookmark not defined. |
| 1.3    | Objectives                        | Error! Bookmark not defined. |
| 1.4    | Problem Scope                     | Error! Bookmark not defined. |
| 1.5    | Thesis Outline                    | Error! Bookmark not defined. |
| СНАРТ  | ER II LITERATURE STUDY            | Error! Bookmark not defined. |
| 2.1    | Pushback Car                      | Error! Bookmark not defined. |
| 2.2    | Engineering Design                | Error! Bookmark not defined. |
| 2.3    | Meterial                          | Error! Bookmark not defined. |
| 2.4    | Von-mises Criterion               | Error! Bookmark not defined. |
| 2.5    | Safety Factor                     | Error! Bookmark not defined. |
| 2.6    | Engineering Stress and Strain     | Error! Bookmark not defined. |
| 2.7    | Finite Element Method             | Error! Bookmark not defined. |
| СНАРТ  | TER III RESEARCH METHODOLOGY      | Error! Bookmark not defined. |
| 3.1    | Initial Observation               | Error! Bookmark not defined. |
| 3.2    | Conceptualiazation Design         | Error! Bookmark not defined. |
| 3.3    | Detailed Design                   | Error! Bookmark not defined. |
| 3.3    | .1 Feasibility Assessment         | Error! Bookmark not defined. |

| 3.3.2   | Establising Design Requirement  | . Error! Bookmark not defined. |
|---------|---------------------------------|--------------------------------|
| 3.4 Fo  | orming Mesh                     | . Error! Bookmark not defined. |
| 3.4.1   | Body Mesh                       | . Error! Bookmark not defined. |
| 3.4.2   | Frame Mesh                      | . Error! Bookmark not defined. |
| CHAPTER | IV RESULT AND DISCUSSION        | . Error! Bookmark not defined. |
| 4.1 Aı  | nalysis Result                  | . Error! Bookmark not defined. |
| 4.1.1   | Result Body Pushback Tug        | . Error! Bookmark not defined. |
| 4.1.2   | Result Frame Pushback Tug       | . Error! Bookmark not defined. |
| 4.2 Cy  | ylinder Hydrolic Calculation    | . Error! Bookmark not defined. |
| CHAPTER | V CONCLUSION AND RECOMMENDATION | ONError! Bookmark not defined  |
| 5.1 Co  | onclusion                       | . Error! Bookmark not defined. |
| 5.2 Re  | ecommendation                   | . Error! Bookmark not defined. |
| REFEREN | CES                             | . Error! Bookmark not defined. |

# LIST OF FIGURE

| Figure 2. 1 Pushback Car                                  | Error! Bookmark not defined.        |
|-----------------------------------------------------------|-------------------------------------|
| Figure 2. 2 Design Process tree                           | Error! Bookmark not defined.        |
| Figure 2. 3 Material tree                                 | Error! Bookmark not defined.        |
| Figure 2. 4 Principle of energy theory                    | Error! Bookmark not defined.        |
| Figure 2. 5 Factor of safety equation in Mechanical Engin | neeringError! Bookmark not defined. |
| Figure 2. 7 Stress-Strain Diagram                         | Error! Bookmark not defined.        |
| Figure 2. 8 Process Finite Element Analysis               | Error! Bookmark not defined.        |
| Figure 2. 9 Comparison using finite element analysis      | Error! Bookmark not defined.        |
| Figure 2. 10 Mesh Manual Refinement                       | Error! Bookmark not defined.        |
| Figure 3. 1 Concept of Thinking                           | Error! Bookmark not defined.        |
| Figure 3. 3 Frame Pushback                                | Error! Bookmark not defined.        |
| Figure 3. 2 Design of Pushback Tug                        | Error! Bookmark not defined.        |
| Figure 3. 5 2D of Assembly Pushaback Tug                  | Error! Bookmark not defined.        |
| Figure 3. 4 Body of Pushback Tug                          | Error! Bookmark not defined.        |
| Figure 3. 6 Workbench Ansys                               | Error! Bookmark not defined.        |
| Figure 3. 8 Body Sizing Mesh with size 30 mm              | Error! Bookmark not defined.        |
| Figure 3. 7 Distributed Mass 17 Ton                       | Error! Bookmark not defined.        |
| Figure 3. 9 Result Total Deformation                      | Error! Bookmark not defined.        |
| Figure 3. 10 Mesh Refinement Graph of Total Deformation   | onError! Bookmark not defined.      |
| Figure 3. 11 a given load of 7 Ton                        | Error! Bookmark not defined.        |
| Figure 3. 12 mesh body size 20mm size                     | Error! Bookmark not defined.        |
| Figure 3. 13 Mesh Refinement Graph of Total Deformation   | onError! Bookmark not defined.      |
| Figure 4. 1 Von mises Stress Body Pushback Tug Result.    | Error! Bookmark not defined.        |
| Figure 4. 2 Maximum Point of Von-mises Stress             | Error! Bookmark not defined.        |
| Figure 4. 3 Total Deformation Body Pushback Result        | Error! Bookmark not defined.        |
| Figure 4. 4 Maximum Point of Total Deformation            | Error! Bookmark not defined.        |
| Figure 4. 5 Safety Factor Result ANSYS                    | Error! Bookmark not defined.        |
| Figure 4. 6 Result of Von-mises Stress Analysis           | Error! Bookmark not defined.        |
| Figure 4. 7 The Maximum Point of Von-mises Stress         | Error! Bookmark not defined.        |
| Figure 4. 8 Total Deformation of Frame Pushback Tug       | Error! Bookmark not defined.        |
| Figure 4. 9 Safety Factor Result                          | Error! Bookmark not defined.        |

| Figure 4. 10 Cylinder Hydrolic Dual Port              | Error! Bookmark not defined. |
|-------------------------------------------------------|------------------------------|
| Figure 4. 11 Cylinder Hydrolic when extension occurs  | Error! Bookmark not defined. |
| Figure 4. 12 Hydrolic Cylinder when Retraction Occurs | Error! Bookmark not defined. |

# LIST OF TABLE

| Table 2. 1 Mechanical Properties ASTM A36                           | Error! Bookmark not defined. |
|---------------------------------------------------------------------|------------------------------|
| Table 2. 2 Room-Temperature Elastic and Shear Moduli a Metal Alloys |                              |
| Table 3. 1 Mechanical properties of ASTM A36                        | Error! Bookmark not defined. |
| Table 3. 2 Chemical Composition of ASTM A36                         | Error! Bookmark not defined. |
| Table 3. 3 Physical Properties of ASTM A36                          | Error! Bookmark not defined. |
| Table 3. 4 Table of Body Convergence Test in ANSYS                  | Error! Bookmark not defined. |
| Table 3. 5 Table of Frame Convergence Test in ANSYS                 | Error! Bookmark not defined. |
| Table 4. 1 Efficiency factor for loses power                        | Error! Bookmark not defined. |