Design of IOT-Based Flood Early Warning System and Automatic Dam Gate Control ### **UNDERGRADUATE THESIS** Submitted as on of The Requirements to Obtain Sarjana Teknik (S.T.) By: Albi Alghiffhari 003201900029 # FACULTY OF ENGINEERING MECHANICAL ENGINEERING STUDY PROGRAM PRESIDENT UNIVERSITY 2023 ## THESIS APPROVAL # Design Of IOT-Based Flood Early Warning Tool and Automatic Dam Gate Control By Albi Alghiffhari 003201900029 Approved by (Dr. Ir. Wahyono Sapto Widodo M. Eng. Pract.) Mongto Thesis Supervisor (Dr. Eng. Lydia Anggraini, S.T., M.Eng.) LS: a 192 Head of Study Program Mechanical Engineering #### PANEL OF EXAMINER APPROVAL The Panel of Examiners declare that the undergraduate thesis entitled # Design Of IOT-Based Flood Early Warning Tool and Automatic Dam Gate Control that was submitted by Albi Alghiffhari majoring in Mechanical Engineering from the Faculty of Engineering was assessed and approved to have passed the Oral Examination on May, 3rd 2023 Panel of Examiner (Iksan Bukhori, ST., M.Phil.) Chair of Panel Examiner (Riyanto Aji, ST., M.Msi) Examiner I #### STATEMENT OF ORIGINALITY In my capacity as an active student of President University and as the author of the undergraduate **thesis/<u>final project/business plan</u>** (underline that applies) stated below: Name : Albi Alghiffhari Student ID number : 003201900029 Study Program : Mechanical Engineering Faculty : Engineering I hereby declare that my undergraduate thesis/final project/business plan entitled **Design Of IOT-Based Flood Early Warning Tool and Automatic Dam Gate Control** is, to the best of my knowledge and belief, an original piece of work based on sound academic principles. If there is any plagiarism, including but not limited to Artificial Intelligence plagiarism, is detected in this undergraduate thesis/final project/business plan, I am willing to be personally responsible for the consequences of these acts of plagiarism, and accept the sanctions against these acts in accordance with the rules and policies of President University. I also declare that this work, either in whole or in part, has not been submitted to another university to obtain a degree. Cikarang, 30 March 2023 Albi Alghiffhari SCIENTIFIC PUBLICATION APPROVAL FOR ACADEMIC INTEREST As a student of the President University, I, the undersigned: Name : Albi Alghiffhari Student ID number : 00201900029 Study program : Mechanical Engineering for the purpose of development of science and technology, certify, and approve to give President University a non-exclusive royalty-free right upon my final report with the title: Design Of IOT-Based Flood Early Warning Tool and Automatic Dam Gate Control With this non-exclusive royalty-free right, President University is entitled to converse, to convert, to manage in a database, to maintain, and to publish my final report. There are to be done with the obligation from President University to mention my name as the copyright owner of my final report. This statement I made in truth. Cikarang, 30 March 2023 Albi Alghiffhari #### ADVISOR'S APPROVAL FOR PUBLICATION As a lecturer of the President University, I, the undersigned: Advisor's Name : Dr. Ir. Wahyono Sapto Widodo M. Eng. Pract. NIDN : 0409076804 Study program : Mechanical Engineering Faculty : Engineering declare that following thesis: Title of thesis : Design Of Iot-Based Flood Early Warning : Tool and Automatic Dame Gate Control Undergraduate Thesis author : Albi Alghiffhari Student ID number : 003201900029 will be published in $journal/\underline{institution's\ repository}$ / proceeding / unpublish / (underline that applies) Cikarang, 30 March 2023 Mongto Dr. Ir. Wahyono Sapto Widodo M. Eng. Pract. # TURNITIN TEST RESULT # Design of IOT-Based Flood Early Warning System and Automatic Dam Gate Control | 14%
SIMILARITY INDEX | 11%
INTERNET SOURCES | 7% PUBLICATIONS | 8%
STUDENT PA | APERS | |---|--|---|--------------------------------|-------| | PRIMARY SOURCES | | | | | | 1 Submit
Student Pap | ted to Wawasan | Open Univers | ity | 1% | | Ramda
Agung,
based
System
Interna | Mutaqin Subekt
ni Ramdani, Ama
Miftakhus Surur
Early Warning Ca
Using Smartpho
Itional Conference
Iting (ICIC), 2021 | et Suroso, Rud
: "Internet of I
or Theft Securit
ones", 2021 Six | i Budi
Γhings-
ty
kth | 1% | | ojs.poli | med.ac.id | | | 1% | | 4 Submit | ted to Universiti | Teknologi MA | RA | 1% | | 5 digilib. | oolban.ac.id | | | 1% | | 6 blog.uk | | | | 1% | ## **GPT ZERO RESULT** #### Stats Average Perplexity Score: 165.462 A document's perplexity is a measurement of the randomness of the text **Burstiness Score: 525.975** A document's burstiness is a measurement of the variation in perplexity Your sentence with the highest perplexity, "4 BAB II", has a perplexity of: 3307 #### **ABSTRACT** Flooding is still a problem in big cities in Indonesia, one way that can be done to minimize the occurrence of floods that will come unexpectedly is to provide information earlier before a flood occurs. The research being conducted this time, "IoT Design of Website-Based Flood Early Warning Devices and Automatic Dam Gate Controllers. The design of this Flood Detection System is an IoT project based on the esp8266 microcontroller which is integrated with a web application and mySQL database. The working principle of this system is that a sensor that is installed perpendicularly at a certain height above the water level will emit ultrasonic waves with a speed of 340 m/s in the air. The waves will then hit the surface of the water and bounce back towards the sensor. In addition, the sluice at the dam will also process an ultrasonic sensor which functions as a distance meter when the water level reaches its highest point, and the servo motor as the sluice will carry out the command to raise the sluice automatically and simultaneously with the sound of a siren marking the water point. the characteristics of the HCSR-04 can detect flood water levels with an accuracy rate of 99.4% and servo motor 0. when the position of the dam is in a state of danger. Tests in the lab show that the system built can record water levels in real-time which can be monitored from the monitoring website, , the error rate that occurs on the sensor is at least 0.5% so that the performance of the equipment and system goes well. Keywords: Internet of Things, Nodemcu Amica Esp 8266, HCSR-04, Dam Control, Flood Early Warning #### ACKNOWLEDGEMENT First of all, I want to thank God in the most sincere way possible since this study would not be possible without His help and favor. By completing my thesis, I also came to the realization that I can succeed because of the support, inspiration, direction, and encouragement of the people around me. I would thus want to thank them for their support in helping me to complete my thesis. - First and foremost, I want to thank my family, especially my parents, who have always supported me emotionally and physically, from the bottom of my heart. I appreciate your unceasing prayers and love. - Second, I would like to thank my thesis advisor, Dr. Ir. Wahyono Sapto Widodo M. Eng.Pract and Drs. Nanang Ali Suitisna,M.Eng. Thank you for your help and advice. I am delighted to have you as my thesis advisor. Thank you for your helpful advice and recommendations, which considerably benefited me in finishing this thesis. - Third, for each of my Mechanical Engineering study program instructors, whom I cannot name individually. I appreciate your time, effort, attention, patience, and support in ensuring we get the most out of our studies. - Finally, I would want to thank all of the participants in this study for their efforts, willingness, and time, which enabled this thesis to be completed successfully. # LIST OF CONTENT | THE | ESIS APPROVALII | |-----|---| | PAN | NEL OF EXAMINER APPROVAL III | | STA | TEMENT OF ORIGINALITYIV | | SCI | ENTIFIC PUBLICATION APPROVAL FOR ACADEMIC INTERESTV | | AD' | VISOR'S APPROVAL FOR PUBLICATIONVI | | TUI | RNITIN TEST RESULTVII | | GP7 | ZERO RESULTVIII | | ABS | STRACTIX | | AC | XNOWLEDGEMENTX | | LIS | Γ OF CONTENTXI | | LIS | Γ OF FIGURESXV | | LIS | Γ OF TABLESXVII | | BAl | B I INTRODUCTION | | 1.1 | Background | | 1.2 | Formulation of the problem | | 1.3 | Purpose | | 1.4 | Problem Limitation | | BAl | 3 II LITERATURE REVIEW 4 | | 2.1 | Flood | | 2.2 | Disaster management | | 2.3 | Weir Door5 | | 2.4 | Hardware components | | 2.4.1 | Sensor HCSR-04 | 6 | |---------|----------------------------------|------| | 2.4.2 | MG 996 R Servo Motors | 7 | | 2.4.3 | Buzzer Y | 9 | | 2.4.4 | NodeMCU ESP8266 v.3 | 9 | | 2.4.5 | Relay Module | . 11 | | 2.4.6 | Arduino Uno R3 | . 13 | | 2.4.7 | Liquid Crystal Display | . 14 | | 2.4.8 | Board (Project Board) | . 15 | | 2.5 So | ftware | . 16 | | 2.5.1 | Arduino-type IDE | . 16 | | 2.5.2 | XAMPP | . 17 | | 2.5.3 | MySQL | . 19 | | 2.5.4 | Phpmyadmin | . 19 | | 2.5.5 | Perl | . 19 | | BAB III | METHODOLOGY | . 20 | | 3.1 Re | search Method | . 20 | | 3.2 Tir | ne and Place of Research | . 20 | | 3.3 To | ols and materials | . 21 | | 3.4 Re | search Phases | . 22 | | 3.5 Pro | blem Identification | . 23 | | 3.6 Da | ta Collection | . 23 | | 3.7 Co | nceptual Design | . 24 | | 3.8 Sys | stem Design | . 24 | | 3.8.1 | Design of System Flood Detection | . 24 | | 3.8.2 | Hardware Preparation | . 26 | | 3 | .8.3 | Automatic Dam Design | . 26 | |------|-------|--|------| | 3 | .8.4 | Hardware Preparation | . 27 | | 3 | .8.5 | Flow Chart System | . 28 | | 3.9 | Soft | ware Design | . 29 | | 3 | .9.1 | Installing Software Ide Arduino | . 29 | | 3 | .9.2 | Nodemcu Driver Installation | . 31 | | 3 | .9.3 | Installing XAMPP on Windows 10 | . 32 | | 3 | .9.4 | Activating Server and Database Through Xampp | . 33 | | 3 | .9.5 | Processing the Phpmyadmin Database | . 35 | | 3.10 |) Н | CSR-04 Sensor Data Characteristics Method | . 37 | | 3.11 | l S | G90 Servo Motor Characteristics Method | . 37 | | 3.12 | 2 N | Method of Connecting Database To Website | . 37 | | 3.13 | 3 N | Iethod of Opening and Closing Automatic Watergates | . 38 | | BA | B 4 R | ESULT AND DISCUSSION | . 39 | | 3.1 | Haro | dware Design | . 39 | | 3.2 | Ove | rall System Design Results | . 39 | | 3.3 | The | result of the design of the Automatic Water Gate | . 44 | | 3.4 | Data | abase View and Web View | . 45 | | 3 | .4.1 | XAMPP | . 45 | | 3 | .4.2 | Database View | . 45 | | 3 | .4.3 | Web View | . 46 | | 3.5 | HCI | RS Sensor Characteristics Results -04 | . 49 | | 3.6 | Con | nparison of water level values between HCRS 04 and Ruler | . 49 | | 3.7 | Resi | ults of MG 966R Servo Motor Characteristics | . 51 | | 3.8 | Dan | gate testing with automatic mode | . 53 | | CHAPTER V CONCLUSIONS | 54 | |-----------------------|----| | 5.1 CONCLUSION | 54 | | 5.2 ADVICE | 54 | | REFERENSI | 55 | | APPENDIX | 58 | # LIST OF FIGURES | Figure 2. 1 HC SR04 ultrasonic sensor | 7 | |---|----| | Figure 2. 2 SG90 motors | 8 | | Figure 2. 3 Buzzers | 9 | | Figure 2. 4 NodeMCU ESP826 and Pin Scheme | 10 | | Figure 2. 5 Relay Module 4 channel 5v DC | 13 | | Figure 2. 6 Arduino Uno R3 | 13 | | Figure 2. 7 LCD I2C 16 x 2 | 15 | | Figure 2. 8 Breadboard | 15 | | Figure 2. 9 Display of the Arduino program | 17 | | Figure 2. 10 Display Xampp | 18 | | Figure 3. 1 Design of IOT-Based Flood Detection Tool | 25 | | Figure 3. 2 Automatic dam system | 26 | | Figure 3. 3 Flow Chart System | 27 | | Figure 3. 7 Display arduino.cc/Main/Software | 29 | | Figure 3. 8 The arduino.exe file is in the arduino folder | 30 | | Figure 3. 9 Preferences window on arduino | 30 | | Figure 3. 10 Boards Manager window on arduino | 31 | | Figure 3. 11 Device Manager view | 32 | | Figure 3. 12 Xamp view | 33 | | Figure 3. 13 Activate server and Mysql on XAMPP | 34 | | Figure 3. 14 PhpMyAdmin Database view | 34 | | Figure 3. 15 Creating New Databases | 35 | | Figure 3. 16 Create Tables in the database | 36 | | Figure 3. 17 Creating Table Formats | 36 | | Figure 4. 1 Tool view | 39 | |---|------| | Figure 4. 2 Display of Flood Detection Hardware | 40 | | Figure 4. 3 Automatic Dam Circuit | 41 | | Figure 4. 4 Water Level Reading Simulation | 42 | | Figure 4. 5 Watergate Simulation | 43 | | Figure 4. 6 Sluice Gate When Closed and Open | 44 | | Figure 4. 7 Display of the XAMPP control panel | 45 | | Figure 4. 8 PhpMyAdmin, which is an open-source website | 46 | | Figure 4. 9 Display on web | 46 | | Figure 4. 10 Dashboard display | 47 | | Figure 4. 11 The data log widget display | 47 | | Figure 4. 12 The chart widget | 48 | | Figure 4. 13 Setting View | 48 | | Figure 4. 14 Display Log Out | 49 | | Figure 4. 15 Comparison of Water Level Values Between HCSR-04 and Rul | er50 | | Figure 4. 16 Graph Comparison Between Bows and MG 966R Servo Motors | 52 | # LIST OF TABLES | Table 3. 1 Nodemcu Pin connection | 26 | |---|----| | Table 3. 2 Arduino Pin Connection. | 27 | | Table 4. 1 Comparison of Water Level Values Between HCSR-04 and Ruler | 50 | | Table 4. 2 Comparison Between Arc and Angle of Servo Motor | 52 | | Table 4. 3 Dam gate testing with automatic mode. | 53 |