
INFORMATION SYSTEM APPLICATION, Vol. 01, No. 02

ISSN 2503-166X

1

Self-Destruct-Capable Multi-Tiered

Deniable Data Encryptor
1
Nur Hadisukmana,

2
Andika Chandra Jaya

1,2
President University, Faculty of Computing, Jl. Ki Hajar Dewantara, Cikarang Baru – Cikarang, Bekasi 17550

1
E-Mail: anursu2002@yahoo.com

Abstract— Data security and privacy often collides with

government desire to protect its People. As government is

responsible to create laws and execute those, government

often violate innocent Citizens privacy to hunt for some

lawless Person. When some of the People do not mind, many

others resort to breaking some laws to protect their privacy.

One controversial law is regarding encryption, some nations

required the encryption system creator to deliberately leave a

backdoor in which government can spy on their Citizen. This

application, named New Encryptor, provides data security

from unauthorized eyes, including government. Through this

application, government agencies would have to spend more

time in decrypting the traffic, making only warranted

searches can be conducted as it should consume increasing

amount of resources. This application consist of layered

security, steganography, self-kill, and deniable encryption. It

is capable of AES encapsulating PGP alongside with

steganography to hide the password and deniable encryption

that can draw random image.

Keywords—encryption, decryption, layered security,

steganography.

I. INTRODUCTION

Data security is often important, even when the data in
question are trivial data like downloaded images. A
determined identity thief is willing to steal any data to
obtain clue about someone to be sold at any market price.
When information about someone is lost, so does the
privacy regarding that information. Hence, privacy through
data security is necessary. Problem here arises when the
desire of privacy clashed with government demand of
information openness under pretext of „national security.‟

Most cryptographic software requires some form of
stored key. According to Kerckhoff‟s Principle, “The
strength of any encryption delies on the strength of its
keys.” Therefore, the vulnerability of any encryption system
is in the key. Through the stored key, it can leave the
software vulnerable should it be compromised through
either government intervention or sheer carelessness; and
everyone who compromise that software can disguise as the
actual owner. The example of the government intervention
that may compromise any cryptographic system is British
Regulation of Investigation Power Act of 2000. In that law,
the government can legally demand the key to any
encryption software [1].

In Indonesia, this kind of disclosure is achieved through
Electronic Information and Transaction Law (Undang-

Undang Informasi dan Transaksi Elektronik) Article 1.1
which denotes encryption system as Electronic Information
and can be used as evidence in criminal case. Article 42 of
the same law states that “Investigation of any crime as
stated in this law, is conducted according to Code of
Criminal Procedure (Kitab Undang-undang Hukum Acara
Pidana) and regulations in this law.” Code of Criminal
Procedure of 1981, Article 175 allows convict to stay quiet
if the testimony may incriminate the convict. However, the
convict may be deemed as uncooperative in court to
increase the verdict [2][3].

Therefore, improved encryption system should involve

no internally-stored security key that can be compromised.

To achieve that, there are three possible options to remove

the key from the encryption; namely hiding the key in plain

sight, sending the key altogether, or creating “deniable

encryption.”

The objectives of this research are:

1. To create application to explore the current
cryptography system through layered security,
steganography, and deniable encryption.

2. To exploit the limitation of current data privacy as

denoted in the Fourth Amendment and Fifth

Amendment to The Constitution of The United States

of America.

II. SYSTEM ANALYIS

The program in this research is built based upon

layering approach in which each preceding encryption

algorithm encrypts whatever is in the inner layer. Additional

features including steganography to hide the outermost key,

self-kill capability that kills the process if there exists

several failures in entering the right password, and multi-

key capability that can be used to mislead the cryptanalyst

as the deniable encryption.

In Figure 2.1, the arrow indicates where the data in

process would go during encryption process. Notice that the

PGP ciphertext and its own key are merged into one

ciphertext to be encrypted deeper using AES.

INFORMATION SYSTEM APPLICATION, Vol. 01, No. 02

ISSN 2503-166X 2

2

Figure 2.1 Encryption Process

In decryption, referring to Figure 2.2, the data direction

also follows the arrow. Notice that the self-kill capability is

closely tied with deniable encryption due to its reliance

upon combination of stored passwords and input password

in the decryption side.

Figure 2.2 Decryption Process

The use case for the program is denoted in Figure

2.3.

Figure 2.3 Use-Case Diagram

III. SYSEM DESIGN

3.1 GUI Design

 Graphical User Interface is required for most modern

application to let user intuitively guide themselves through

the program without lengthy instructions.

3.1.1 Encryptor UI

 Figure 3.1 is the UI for encryptor. It has straightforward

look with everything is shown in one screen: input of files,

passwords for further application use, preview of the

concealer image, command button, and progress bar.

Figure 3.1 Encryptor UI

3.1.2 Decryptor UI

 Shown in Figure 3.2 is the decryptor UI, similar to

encryptor side, which has equally straightforward look with

few noticeable differences: one password input instead of

two and remaining chances instead of progress bar.

Figure 3.2 Decryptor UI

3.2 Top-Level Algorithm

 The encryption is designed around Figure 3.1, it is a

straightforward algorithm, user must provide two

passwords, concealing image/file, and the plain file to be

encrypted. Then PGP will do its job to encrypt the file and it

produces its own key. After which, the PGP key will be

embedded into the resulting ciphertext and denoted with

new line and iterated once more with AES, also with its key

embedded after new line. Both will have the steganography

engaged to concealer image alongside the AES key. Finally,

all files (adulterated image and ciphertext) are stored

separately. In each step, the progress bar will progress

alongside the steps of encryption finished.

While the decryption is designed around Figure 3.2.
User must provide three items here: one password,
concealer file, and the cipher file. Then self-kill system will
inspect the password to check whether it is valid or not. If it
failed the validity test, then the self-kill mechanism will be

Files to be encrypted Browse Button

File path

Concealer File Browse Button

File path

Command

Button
Progress Bar

Image Box

Real Password

Fake Password

Password 1

Password 2

Encrypted File Browse Button

File path

Concealer File Browse Button

File path

Command

Button

Password Password Input

Remaining Chances

Image Box

INFORMATION SYSTEM APPLICATION, Vol. 01, No. 02

ISSN 2503-166X

3

triggered and allow only two more attempts which upon
failure of the third attempt will kill the program.

After passing the validity check, the program will then
determine whether the password is real password or faked
one. If it is fake password, then the application will turn the
ciphertext into image.

 The real decryption starts if the password is real one.

First it will retrieve AES key from the image which is used

to decrypt the outer layer security. The AES plaintext

contains PGP ciphertext and PGP key. Extract PGP key and

the actual plaintext can be deciphered which is done

immediately. Users then save the plaintext file. Then the

user will be notified that the decryption is done.

IV. SYSTEM DEVELOPMENT

 The application in this research is built with modular

approach to ease maintenance. The application is built in

three modules and one main class. The difference between

module and class-object is that module does not need to be

instantiated while class needs to be instantiated as object.

The target is still the same, enhance modularity in which

each function inside each module can be modified internally

without ever having to change any calling segment.

4.1 Main Class

 The Main class is used as the interface between the

application and the user. The interfacing is crucial to speed

up the maintenance and to improve modularity. For

instance, adding or removing new modules/functions (both

are considered equal in this application). Modularity in this

program is greatly aided by the main class.

4.2 Deniable Encryption Capability

 This application can draw an image out of the ciphertext

byte as “encryption denier” scheme. As long as one can re-

create the header, any random file can be generated in any

format. For the matter, it does not care whether the file is

valid or corrupted as long as the ciphertext byte is hidden

there.

4.3 Ordinary Encryption

This side of application is used to scramble the plaintext
into unintelligible (cipher) text. The sequence of the
processing in this module is hash and sign, compress,
symmetric encryption of the compressed plaintext, encrypt
the symmetric key asymmetrically, merging (already
covered in the Main Class), and finally outer layer
encryption.

 Most of the function in this application is API library-

based. API stands for Application Programming Interface,

which in turn is a set of routines to aid building software

applications. APIs are typically used by developer in order

to reduce their workload by applying what the IDE

(Integrated Development Environment) already has in

certain areas. In this application, the API used is primarily

from Windows API which mostly being imported as

System.Security.Cryptography. Hence, in developing the

application, there is no need to obtain any library other than

the ones available.

4.4 Ordinary Decryption

 This side of the encryption is to retrieve the plaintext

from ciphertext. Similar to the encryption side, this side also

relies on library and API (all from Visual Studio). The order

of decryption is the reverse order of encryption.

4.4.1 Verify Hash and Signature

To validate the hash value from the decompressed file the

data is hashed and then compared with the signed hash.

Also included that the function demands the RSA key to be

working. Then the data is verified by comparing the

signature and verifying the hash of the data.

4.4.2 Asymetric Decryption

The Asymmetric decryption is to retrieve the symmetric
key required to retrieve the compressed plaintext. This code
will receive the ciphertext as string directly from the
decryptor near the user interface. The key for this
encryption is obtained from the previous step in the whole
decryption process.

 It will first convert the input from base64 to byte array

which will be decrypted. In Visual Basic, it is possible to

have implicit return from a function as long as the function

output is defined and call the function name as if it were

variable.

4.4.3 Decompression

 In order to decompress the decrypted plaintext, it uses

MemoryStream that based on the input byte array and the

stream is non-resizable. Also create buffer which has the

same size as the input in order for the decompression stream

to read into. In the loop to obtain the decompressed byte,

another memory stream is opened which is written from the

buffer. Then, the output stream is turned into byte array as

output.

4.4.4 Symmetric Decryption

Figure 4.1 Symmetric Encryption

The function in Figure 4.1 is similar to the encryption
side. However, reading from stream which requires another
variable as buffer is the distinct differences between the
encryptor and decryptor.

The working of the function is by creating the Triple
DES object, retrieve key (which has been decrypted earlier
and set as module-level variable at the interface), allocate
memory stream, generate decryption stream, create the

INFORMATION SYSTEM APPLICATION, Vol. 01, No. 02

ISSN 2503-166X 4

4

buffer, read from stream to the buffer, close everything, and
finally return the buffer as output.

 Cryptostream mode determines what the function

running the object can do. If it is set at read, it can only

read.

4.5 Additional Encryption/Decryption Modules

 This Module requires three module-level variables and

those will be deemed as property belong to the module.

Also included five imports that enable all necessary

functions in the application, particularly this module.

 There are five imports (four namespaces and one class)

used in this program: Security.Cryptography, IO.File, IO,

IO.compression, and Text. IO namespace handles for file

input/output and memory stream. IO.File class provides

functions for operating with files. IO.Compression is to

provide compression routines (GZip).

Security.Cryptography provides all classes regarding

encryption including cryptographic stream, hashing

algorithm, and cryptographic service providers.

Three module-level variables that contain the key for
each encryption phase. Each key is to be used either in the
Main Class as part of ciphertext that will obviate the
demand to store the key or in the Steganography as part of
the information stored in the image.

 These variables are encapsulated throughout the

module, making access of these variables requires get

method to read the content and set method to write to the

variable from outside the module. This is required as the

key is to be merged in the main class. In Visual Studio,

Structure keyword is reserved to form the data structure in

which multiple related variables can be stored as one

variable.

4.6 Steganography

 Steganography part in the application has all its

components arranged in one module, making it entirely

possible to have it reused as is. In this module, the hidden

information is called plaintext or information, different

from plaintext in the encryption/decryption module.

 Five module-level variables, these variables are reused

throughout the module. There are FileInfo, FileStream, and

TSymmetricKey structure as concern. FileInfo class aids in

creation of FileStream. FileStream is to expose a stream

around a file. TSymmetricKey stores the symmetric

encryption key to/from the encryption module.

Figure 4.2 First step to conceal

 The first step of steganography (Figure 4.2) concealing

involves opening the image and converting it to an array of

bytes. First to do is to instantiate FileInfo class to wrap the

file path, denoted as string. Then set up the file stream

which comes from OpenRead function to create a

FileStream. Also take the length of the byte array and the

image extension as the length is crucial to create the byte

array and the extension aids in saving the file.

Figure 4.3 Prepare the plaintext

 The step denoted in Figure 4.3 is to prepare the text to

be concealed inside image. The substeps are obtaining the

Rijndael key to be hidden altogether from the encryption

module, encrypt it slightly to deceive everyone intentionally

trying to obtain the key, merge all to be concealed

informations, and set Sentinel String as delimiter of the

image from the hidden text.

Figure 4.4 String to Byte Array modification

 These lines in Figure 4.4 are to modify the string to byte

array by converting every character inside the string into its

ASCII equivalent which is then converted into byte.

This step is to conceal secret data inside the image in
such a manner that it will not corrupt the data and image.
The best way to do it is to place the data after the end of the
file.

 First to do is to create new byte array with the size of the

original image plus the length of the information plus the

length of sentinel string. Then, place the image bytes,

sentinel string, and the information in that order to ease

retrieval.

Figure 4.5 Save altered file

Figure 4.5 is the code utilized to save the altered file.
Unlike the save file in the main class, this set needs to call
the main form to access save file capability and its textbox.

 Set the format up according to the original file format as

the filter (the “Save As type” column in any save file

window). Then show dialog box and accept file name from

user. Last step is to write all the bytes from the conceal step

as a binary file named according to the file name given by

user in overwriting manner. The Reset subroutine is to reset

all options inside the save file dialog.

4.7 Miscancellaneous Functions

 All functions in this section are not directly involved in

the related processing. However, those functions are

INFORMATION SYSTEM APPLICATION, Vol. 01, No. 02

ISSN 2503-166X

5

organized under pre-existing modules as those were

conceived during development of that module.

Figure 4.6 Convert string to byte array

This function in Figure 4.6 is simply splitting input
string based on the delimiter at every occurrence in textual
basis. Textual basis means that the delimiter is compared as
is instead of changed into binary form (0x0D 0x0A).

 This function is simply converting a string (input) to an

array of bytes (output) as is. It works by converting each

character in the input into its ASCII code equivalent and

convert it into byte. Remember that ASCII ranges from 0 to

255, the same range as byte, it makes them equivalent and

readily converted.

4.8 Caesarian Encryption/Decryption Module

This module is only to manipulate key in such a manner
that it will do deception against any person trying to
intentionally open the secret file by tricking them into
thinking that the key is in Base64. Through that idea, the
simplest way is to encrypt it to another Base64 string,
leaving modified classic cipher as the most probable choice.

 Regardless of the cipher used, the pad must not be

touched to retain the impression of Base64. The

modification involved is expanding the character basis from

whatever the original classic cipher have to 64 characters.

One of well-known classic cipher is Caesar Cipher. It is the

deception method run in this block.

Figure 4.7 Modification of Caesar Cipher

First step of the function in Figure 4.7 is to generate the
pattern by createEncode() subroutine. This step must be
called in order to initiate the variable pattern which is used
throughout the function.

Next step is to initiate a string as output that will receive
encrypted character. Also initiated is the counter of the
character.

Then run a loop which stops when the pad is reached. In
the loop, the application will look for the place of the
currently processed character in the Base64 array and do
modular addition of 64 to it by any number from one to 63
(five in this application). The range was to ensure that the
characters actually shift. After getting the character, append

the output with the resulting character and advance the
counter by one.

 Last step before returning the output is to append the

pad into the output string. Return the output and the

function finished its job.

This function is almost the same as the encryption side.
The initialization is the same: generate the pattern, declare
output and counter. The working of this function is also
almost identical to the encryption side: loop to change each
character in the string until it hits the pad (remember that
the pad must not be changed), append the output with the
changed character, and pad the string.

 However, there is a stark difference: the amount of the

change or to which direction the change is. As long as it

satisfy modular addition to base 64, either way is fine. As

Visual Basic may accept negative remainder, instead of

stepping five to the left (inverting the encryption); stepping

59 to the right is equivalent to stepping five to the left

without the negative remainder. This is the key of

decryption: how many steps to the right necessary.

V. CONCLUSIONS

New Encryptor is a new approach in security through its
self-kill capability in which the application would also
“kill” the entire computer should the condition be met. It
may seems harsh, but it is worth the annoyance to make
only infamous crime warrant the snooping; leaving ordinary
Citizen out of snooping.

The program has successfully achieved its objectives,
namely:

1. Layered Security in which the attempt to open the file is
slowed down.

2. Self-kill capability in which the application can shut
down the computer, delete all data currently in use, and
exit the application.

3. Deniable Encryption in which the application can create
false impression that there is nothing sensitive regarding
“decrypted as corrupt image” data. Another deception in
Deniable encryption scheme is that the key is shifted
several times to deceive the attempt to break open the
key.

The application works properly with some reservations:

1. The file should be no bigger than 450kB to achieve
timely delivery of the decryption (less than three
minutes) based on interpolation of decryption time in
systems with medium-low strength (any laptop released
around 2011). Faster systems should be able to handle
bigger file for the same amount of time.

2. Authentication is somewhat weak, giving out the

message that the data has been adulterated despite being

encrypted and decrypted in the same system. Also it is

vulnerable to Man-in-the-Middle attack in which he can

forge brand new data and send it boldly as if it were the

actual data.

INFORMATION SYSTEM APPLICATION, Vol. 01, No. 02

ISSN 2503-166X 6

6

REFERENCES

[1] Kirk, Jeremy (October 1, 2007). "Contested UK encryption
disclosure law takes effect". Washington Post. PC World. Retrieved
2009-01-05.

[2] Government of Republic of Indonesia. 2006. “Undang-undang
Informasi dan Transaksi Elektronik (Laws on Electronic Information
and Transaction)”

[3] Government of Republic of Indonesia. 1981. “Kitab Undang-undang
Hukum Acara Pidana (Code of Criminal Procedure)”

INFORMATION SYSTEM APPLICATION, Vol. 01, No. 02

ISSN 2503-166X

7

