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ABSTRACT 

A physical system, Low Pass Filter (LPF) RC Circuit, which serves as an impulse response and a square wave input signal are 

utilized to derive the continuous time convolution (convolution integrals). How to set up the limits of integration correctly and 

how the excitation source convolves with the impulse response are explained using a graphical type of solution. This in turn, 

help minimize the students’ misconceptions about the convolution integral. Further, the effect of varying the circuit elements on 

the shape of the convolution output plot is presented allowing students to see the connection between a convolution integral and 

a physical system. PSpice simulation and experiment results are incorporated and are compared with those of the analytical 

solution associated with the convolution integral. 
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I. INTRODUCTION limits. Although the students knew how to write the 

convolution integral equation, they had a poor contextual 

grasp of the integral equation itself. They had difficulties 

understanding the expression for the impulse response h(t-

τ). For a graphical type of solution, the students did not 

understand that the variable t in the excitation function x(t) 

is not the same as that in the impulse response h(t). The 

authors pointed out that the variable t in the excitation 

function x(t) corresponds to a “clock” time when the input 

starts to occur, while that in the impulse response signifies 

a relative time, which is the length of time since the 

impulse response happens at the excitation signal. They 

pointed out further that good mapping between the physics 

and mathematics is required allowing students to build 

good physical intuition. In turn, this equips the students 

well when it comes to studying a concept heavy subject 

such as Signals and Systems.  

A convolution integral for a continuous time signal is 

part of a Signals and Systems course, which is taught to 

Electrical Engineering (EE) major and other engineering 

disciplines including Aeronautics and Astronautics. 

Inherent difficulties that many engineering students face 

when solving a convolution integral is evident. The authors 

of a Signals and Systems textbook have pointed out that 

according to an article that appeared in the IEEE Spectrum 

(March 1991, p.60), convolution has driven many EE 

students to “Contemplate theology either for salvation or 

as an alternative career,” [1]. Analytical solutions to a 

convolution integral have been presented elsewhere [2-3].  

Goldberg et al. has presented a systematic analytical 

method of evaluating a convolution integral using a 

superposition technique [2]. They claim that students find 

the semi graphical methods of solving the convolution 

integral difficult to follow and are susceptible to errors, in 

particular, when it comes to dealing with discontinuous 

functions. Soares et al. also presented their work on the 

solution to a convolution integral, which is based on an 

analytical solution. The technique they presented in this 

work can be found in any Signals and Systems textbook 

[3].  

In a closely related topic in Signals and Systems, 

Nelson et al. studied the students’ understanding of 

convolution sum (for discrete time signals) at George 

Mason University, Fairfax, VA, USA [5]. They discovered 

that one particular group of students attempted to use the 

brute-force solution strategy while working on the 

convolution sum resulting in an incorrect solution. They 

discovered that there is a need for students to think 

conceptually rather than just applying equations or 

procedures. Their findings show that students in this study 

are challenged by their ability to utilize graphs and employ 

them in a correct manner. 

Students who took Signals and Systems have been 

interviewed by two groups of researchers at the 

Massachusetts Institute of Technology (MIT) and George 

Mason University, respectively [4-5]. Nasr et al. carried 

out studies on the student misconceptions and their origins 

in Signals and System course at MIT [4]. For a non-

graphical convolution integral type of solution, they 

discovered that students had problems setting the integral 

Tagneli et al. presented an effective strategy on how a 

Signal and Systems course should be run [6]. Such a 

strategy involves peer facilitated tutorials, optional class 

test, in class lab assessments and the incorporating of 
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interactive animations. They acknowledge the fact that 

Signals and Systems is a concept heavy subject where the 

students are required to be able to visualize signal 

operations including convolution. They mentioned that 

good animations that are capable of showing signal 

operations are hard to find. They mentioned further that the 

best animation tool available is the Educational MATLAB 

GUI from Georgia Tech, which provides a toolbox in order 

to engage MATLAB interactive animations. (GUI is short 

for Graphical User Interface). This group pointed out that 

the Educational MATLAB GUI cconvdemo for continuous 

time signals does not allow for custom waveforms to be 

used. However, the discrete time convolution animation 

dconvdemo allows. They realize the fact that students need 

to see how convolution works for a variety of input 

waveforms.  

this paper. The s-domain transfer function H(s), cutoff 

frequency, inverse Laplcae Transform of H(s), and the 

impulse response in the time-domain are represented by 

Eqs. (3-6), respectively. As shown in Eqs. (5-6), the the 

inverse Laplace Transform of the transfers function in the 

s-domain gives a time-domain  impulse response h(t) 

associated with the LPF/RC circuit depicted in in Fig. 1. 

The dependence of the convolution integral on the cutoof 

frequency ωc, therefore, on the circuit passive elements (R 

and C) is shown by Eq. (7). 

 

It has been claimed that students perceive the semi 

graphical type of solution to be susceptible to errors, 

especially when piecewise discontinue signals are involved 

[2]. In the present work a square wave input, which is a 

piecewise discontinuous signal is employed and the 

presented analytical solution works well with such a 

discontinuous signal. 

The perception that many EE students have on the fact 

that convolution is a difficult concept to grasp [1], the 

misconceptions that engineering students have when it 

comes to dealing with a continuous time convolution as a 

consequence of lacking of physical intuition [4], and the 

students’ inability to incorporate graphical type of solution 

to the convolution problem in general [4,5] are the 

motivating factors of the present paper. Presenting a 

graphical type of solution to the convolution integral and 

showing a connection between a physical system (the LPF 

RC circuit) and a convolution are the prime objectives of 

the present paper, which in turn, help minimize 

misconceptions that students have about the convolution 

itself. Incorporating the experiment and PSpice simulation 

results has its own merit. PSpice can verify fast whether or 

not the students’ analytical solution is correct. It is hoped 

that the experiment results would convince the students in 

the way that convolution can be applied in a physical 

system. Further, PSpice simulation comes handy because 

students can change the values of R, C, frequency and the 

types of input (square-, triangular- or sinusoidal-wave) 

with a minimum effort and attain the convolution output 

fairly quickly. 

Figure 1. An RC Circuit of An LPF Type 

 𝐻(𝑠) =  
𝜔𝑐

𝑠 + 𝜔𝑐
 (3) 

 𝜔𝑐 =
1

𝑅𝐶
 (4) 

 ℒ−1{𝐻(𝑠)} = 𝜔𝑐  exp (−𝜔𝑐𝑡) (5) 

 ℎ(𝑡) = 𝜔𝑐  exp (−𝜔𝑐𝑡) (6) 

 𝑣𝑜(𝑡) = ∫ [𝜔𝑐 exp (
𝑡

𝑡0

− 𝜔𝑐𝜏)] 𝑣(𝑡 − 𝜏)𝑑𝜏   (7) 

The continuous-time convolution integral shown in Eq. 

(1) will be used in this paper. Eqs. (8-11) represent the 

convolution integrals associated with the square wave 

input signal. Each of these equations is evaluated at a 

different time interval. The respective integrals are easy to 

evaluate. The answers are not included in this paper due to 

a large space that they require. 

The graphical representation of the impulse response 

h(t) is depicted in Fig. (2), which was plotted based on Eq. 

(6), where R=2.2 kΩ and C=1.026μF. In this paper, a 

strong emphasis is placed on the graphical type of solution 

in the derivation of the convolution integrals. 
II. THE ANALYTICAL SOLUTION 

Eqs.  (1-2) represent the convolution integrals for a 

continuous time signal [7-8] 

A. For 0 < t < 0.5T 

In the discussions to follow the period of the input 

signal, denoted T, is 33 ms. Depicted in Fig. (3) is a plot of 

v(t-τ) as a function of τ. The blue exponentially decaying 

plot (with a shaded region underneath it) is the impulse 

response h(τ).  Fig. 3(a) represents t=0, where the input 

signal is located at τ=0-. As we are dealing with a Linear 

Time Invariant (LTI) system, causality dictates that h(τ) is 

0 for τ<0, therefore, the convolution integral gives a zero 

value under this condition. 

 𝑦(𝑡) = ∫ ℎ(𝜏) 𝑥(𝑡 − 𝜏) 𝑑𝜏
𝑡

0

, (1) 

 𝑦(𝑡) = ∫ 𝑥(𝜏) ℎ(𝑡 − 𝜏) 𝑑𝑡
𝑡

0

, (2) 

where h(t) and x(t) are the impulse response and input 

signal, respectively. Fig. 1 depicts an LPF type of an RC 

ciruit, which will be used as a physical model for an 

impulse response in the convolution integral through out In Fig. 3(b) the leading edge of the input signal v(t-τ) 
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is located at t (red online). This is a snapshot of the 

convolution. We wish to evaluate the convolution integral 

within the interval 0<t<0.5T, therefore, we must set the 

upper limit of the integral to t. Remember that for every 

single value of t, the integral in Eq. (1) is evaluated from 

the lower limit (0) to the upper limit (t), where the variable 

of the integrand is τ, with t being a fixed value. At the 

instant shown in Fig. 3(b) the value of the convolution 

integral is the product of the area formed by the impulse 

response plot and the τ-axis (excluding the part where the 

input signal is zero) and that of the corresponding 

overlapping area for 0<τ<t. We shall call this product of 

areas PROD.  The expression for the convolution integral 

is given by Eq. (8), where V0 signifies the amplitude of the 

input signal. 

the integral within the interval 0.5T<t<T. Similar to the 

previous case, the upper and lower limits are t and t-0.5T 

(at the tips of the red arrows (on line)). The convolution 

integral is represented by Eq. (9). At the instant shown in 

Fig. 4(a), where t=0.5T the value of the integral is the 

largest as indicated by the largest overlapping area 

between the input signal and the impulse response. In 

contrast, at the instant shown in Fig. 4(b) the overlapping 

area is very small leading to a small value of PROD, i.e., 

the integral. 

 
 

Figure 4. v(t-𝝉) vs 𝝉 for: a) t = 0.5T; and b) 0.5T < t < T 
Figure 2. The Impulse Response h(𝝉) as a Function of 𝝉 Based on 

the LPF Type of an RC Circuit and Eq. (6). R = 2.2 k𝛀 and C = 1.026 

𝝁F  𝑣𝑜(𝑡) = ∫ 𝑉0 𝜔𝑐

𝑡

0.5𝑇

exp(−𝜔𝑐𝜏) 𝑑𝜏 (9) 

 

The same procedure can be applied at the other 

intervals that are shown in Figs. (5-7). The expected 

convolution integrals are shown by Eqs. (10-11). 

 

Figure 3. v(t-𝝉) vs 𝝉 for: a) t = 0; and b) 0 < t < 0.5T 

 𝑣𝑜(𝑡) = ∫ 𝑉0 𝜔𝑐

𝑡

0

exp(−𝜔𝑐𝜏) 𝑑𝜏 (8) 

B. For 0.5T < t < T 
Figure 5. v(t-𝝉) vs 𝝉 for: a) t = T; and b) T < t < 1.5T 

As t increases further, we look at another snapshot of 

the convolution in Fig. 4(b) where the leading edge of the 

input signal is located at t. We are interested in the value of 
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𝑣𝑜(𝑡) = ∫ 𝑉0

𝑡−𝑇

0

𝜔𝑐 exp(−𝜔𝑐𝜏) 𝑑𝜏

+ ∫ 𝑉0

𝑡

𝑡−0.5𝑇

𝜔𝑐 exp(−𝜔𝑐𝜏) 𝑑𝜏 

(10) 

  
(a) 

Figure 66. v(t-𝝉) vs 𝝉 for: a) t = 1.5T; and b) 1.5T < t < 2T 

 

𝑣𝑜(𝑡) = ∫ 𝑉0

𝑡−𝑇

𝑡−1.5𝑇

𝜔𝑐 exp(−𝜔𝑐𝜏) 𝑑𝜏

+ ∫ 𝑉0

𝑡

𝑡−0.5𝑇

𝜔𝑐 exp(−𝜔𝑐𝜏) 𝑑𝜏 

(11) 

 

(b) Figure 7. Plot of v(t-𝝉) vs 𝝉 for t = 2T 

Figure 8. (a) The plot of v vs. t associated with the LPF/RC 

circuit where R= 2.2 kΩ, C= 1.026 μF. The images were captured on 

an oscilloscope screen. The yellow and red lines are the output and 

input signals. The signal period is 33 ms; (b) The LPF/RC circuit 

experiment setup. 

 

III. THE OUTPUT SIGNALS OF THE CONVOLUTION 

INTEGRAL 

 
Depicted in Fig. 8(a) are the v vs. t plots associated 

with the LPF/RC circuit shown in Fig. 1. The image was 

captured on an oscilloscope screen. The red line 

represents the input signal. The yellow line represents 

the output voltage, which is measured across the 

capacitor. Fig. 8(b) is a photograph of the corresponding 

experiment setup. 

IV. THE GRAPHICAL TYPE OF SOLUTION 

The integral equations represented by Eqs. (8-11) and 

the corresponding graphs depicted in Figs (3-7) are based 

on positive voltage value, i.e., 0<v<Vo. As a matter of 

choice and in order to mimic the experiment-based 

waveform associated with the square wave input signal in 

Fig. 8, from here and onward all plots are shifted 

downward by the amount of 0.5 V0 (see Figs. (9-11, 16)). 

The lower panel in Fig. 9 depicts a simulated plot, which 

was generated by a superposition method by use of Eqs. 

(8-11). The PSpice simulation plot counterpart is shown in 

the upper panel. At t=0+ in Fig. 3(a), the impulse response 

and the input signal starts to convolve. As the leading edge 
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of the input signal advances from 0 to t, the value of PROD 

continues to increase (Fig. 3(b)). The manifestation of this 

is shown in the output signal in Fig. 9 where it is 

increasing monotonically within the given time interval 

(0<τ<t) (see Fig 3(b)). As the input signal travels from t (at 

the instant shown in Fig. 3(b)) towards t=0.5T the value of 

PROD does not change much and soon becomes constant. 

This fact is confirmed by the flat region of the output 

signal in Fig. 9 at this interval. As time continues to 

increase (the leading edge continue to advance) from 

t=0.5T (16.5 ms) to t=0.75T (24.5ms) the overlapped 

regions start to decrease as shown in Figs. 4(a-b), which 

again is confirmed by the decrease in the output signal in 

Fig. 9. This cycle repeats at t= T (33ms). Aided by Figs. 

(5-7), the foregoing reasoning is used to explain the shape 

of the output signal in Fig. 9 beyond T. 

utilized to generate the output signal in Fig. 9; and ii) how 

the respective graphical type of solutions associated with 

Figs. (3-7) can help explain the shape of the same output 

signal are completed. We now turn our attention to Fig. 11. 

Fig. 11 depicts a family of curves representing varying 

resistance values associated with the circuit schematic in 

Fig. 1. The plots in Fig. 11 were generated through the use 

of the analytical solution (Eqs. (8-11)). As shown, the 

lowest resistance value represents the blue signal. As the 

resistance increases the curvature of the plot increases as 

the plot itself gets shifted in the downward direction. The 

shifting can be explained in two different ways. The details 

are provided in the subsequent paragraphs. 

First, at a fixed capacitance value (C=1.026 μF), the 

smaller the resistance value, the higher the cutoff 

frequency ωc gets (see Eq. 4) leading to a higher decay rate 

of the impulse response. The upper and lower panels of 

Fig. 12 represent fast- and slow- exponentially decaying 

impulse response functions, respectively. The leading 

edges of the input signals (both in the upper and lower 

panels) in Fig 13 have passed the 0 s mark slightly. Notice 

that the region under the impulse response in the upper 

panel is slim but very tall leading to a larger value of 

PROD. On the other hand, the region under the impulse 

response in lower panel is wider but 13 times shorter 

resulting in a smaller PROD value. As before, the 

manifestation of these can be seen in Fig. 11, where the 

blue colored output signal representing R=500 Ω has a 

higher value compared to that of the cyan colored output 

signal representing R=6.5 kΩ. As the leading edges of the 

respective input signals advance to t~15 ms in Fig. 14, the 

values of PROD associated with the upper and lower 

panels reach their respective maxima. This is confirmed by 

the blue (R=500 Ω) and cyan (R=6.5 kΩ) output signals in 

Fig. 11 at t~15 ms. As the respective leading edges (see 

Fig. 15) reach t~24 ms, the slim area impulse response in 

the upper panel is completely separated from the input 

signal, while the wider but shorter impulse response in the 

lower panel is still overlapping with the input signal. Fig. 

11 confirms that at t~24 ms the blue signal (R=500Ω) has a 

zero value but the cyan signal (R=6.5 kΩ) has a non-zero 

value.    

 

Figure 9. The plots of v vs. t. v representing the output voltage 

signal across the capacitor in Fig.1. Upper panel: PSpice based 

simulation result. Lower pane: convolution integral (analytical 

solution) based simulation, which was generated based on the 

superposition of Eqs. (8-11). T= 33ms, R=2.2 kΩ and C=1.026 μF. 

Depicted in Fig. 10 is a composite v vs. t plots 

associated with the analytical solution/convolution integral 

and experiment. 

 

Second, the respective time constants (the product of R 

and C) associated with the 500-Ω and 6.5-kΩ resistors are 

0.51 ms and 6.7 ms suggesting that it takes longer for the 

1.026-μF capacitor to reach 63% of its maximum voltage 

(during charging) when the resistance R =6.5 kΩ is used. 

As shown in Fig. 11, at t=6.7 ms the cyan signal (6.5-kΩ) 

has reached only about 63% of the peak-to-peak voltage, 

while the blue signal representing the 500-Ω resistor has 

attained the maximum voltage value at a much earlier time. 

At the time when the cyan signal (6.5 kΩ) has arrived at 

t=16.5 ms its value starts to drop because the capacitor 

begins to discharge. Therefore, with the given the time 

constant (6.7 ms) and the input signal period (T=33 ms), 

the cyan signal is not propagating fast enough. In turn, it 

will never reach the value of the input signal amplitude. 

The foregoing explanations apply to the green- and purple-

colored signals in Fig. 11.   

Figure 10. The plots of v vs.t. representing experiment and 

analytical solution-based simulation. The impulse response is based 

on the LPF/RC circuit in Fig. 1, where R= 2.2 kΩ and C= 1.026 μF. 

The green line represents an input signal. The blue line and scattered 

red diamonds represent the outputs. 

The tasks of explaining: i) how Eqs. (8-11) have been 
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Figure 11. A square wave input. An analytical solution-based 

plots of v vs. t for varying R values and fixed C value. C= 1.026 μF. 

Red line: input signal. Curved lines: output signals. Refer to the 

legend. 

 

Figure 14 The convolution graphical type of solution. At the 

instant shown the value of t is roughly 15 ms.  The upper panel 

represents R= 500 Ω and the lower one represents R=6.5 kΩ. 

 

Figure 12. The plots h(τ) vs. τ. Upper panel: R=500 Ω and 

C=1.026μF (fast exponentially decaying impulse response).  Lower 

panel: R=6.5 kΩ (slower exponentially decaying impulse response). 

 

Figure 15 The convolution graphical type of solution. At the 

instant shown t has passed 22.5 ms slightly. The upper panel 

represents R= 500 Ω and the lower one represents R=6.5 kΩ. 

Depicted in Fig. 16 are the plot of v vs. t for a varying 

capacitance values, while R value is held fixed at 2.2 kΩ. 

The respective plots in upper and lower panels were 

generated through use of PSpice simulation and the 

analytical solution (Eqs. (8-11)). As shown the blue and 

orange plots in either panel are the representation of the 1-

μF and 11-μF capacitance values, respectively. Each plot 

in Fig. 16 corresponds to a different time constant. 

Figure 13. The convolution graphical type of solution. At the 

instant shown the leading edge of the input is located at t, which has 

passed 0 s slightly. The upper panel represents R= 500 Ω and the 

lower one represents R=6.5 kΩ. 
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product of R and C) in an RC circuit was emphasized 

allowing us to see the convolution from a Physics point of 

view rather than just seeing it as complicated and/or 

advanced mathematics. PSpice simulation and experiment 

results were included in order to motivate students to apply 

the convolution in a physical system such as the LPF/RC 

circuit. 
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